Skip to main content
Log in

Electrochemical borylation of nitroarenes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A simple electrochemically mediated method for the conversion of nitroarenes to aryl boronic esters is presented. Electrochemical borylation of a diverse range of nitroarenes, including the late-stage borylation of bioactive molecules, is furnished at room temperature under simple conditions, thereby demonstrating the broad utility and functional-group tolerance of this protocol. This transformation provides a convenient and practical access to aryl boronic esters from widely available nitroarenes, which would significantly streamline the synthetic process of diverse functionalized arenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ono N. The Nitro Group in Organic Synthesis. New York: Wiley-VCH, 2001

    Book  Google Scholar 

  2. Booth G. Nitro Compounds, Aromatic. New York: Wiley-VCH, 2000

    Book  Google Scholar 

  3. Bunnett JF, Zahler RE. Chem Rev, 1951, 49: 273–412

    Article  CAS  Google Scholar 

  4. Makosza M, Winiarski J. Acc Chem Res, 1987, 20: 282–289

    Article  CAS  Google Scholar 

  5. Caron L, Campeau LC, Fagnou K. Org Lett, 2008, 10: 4533–4536

    Article  CAS  Google Scholar 

  6. Sengupta S, Das P. Org Biomol Chem, 2021, 19: 8409–8424

    Article  CAS  Google Scholar 

  7. Zheng X, Ding J, Chen J, Gao W, Liu M, Wu H. Org Lett, 2011, 13: 1726–1729

    Article  CAS  Google Scholar 

  8. Zhang J, Chen J, Liu M, Zheng X, Ding J, Wu H. Green Chem, 2012, 14: 912–916

    Article  CAS  Google Scholar 

  9. Yu XC, Li B, Yu BH, Xu Q. Chin Chem Lett, 2013, 24: 605–608

    Article  CAS  Google Scholar 

  10. Ryan SJ, Schimler SD, Bland DC, Sanford MS. Org Lett, 2015, 17: 1866–1869

    Article  CAS  Google Scholar 

  11. Xuan M, Lu C, Lin BL. Chin Chem Lett, 2020, 31: 84–90

    Article  CAS  Google Scholar 

  12. Yadav MR, Nagaoka M, Kashihara M, Zhong RL, Miyazaki T, Sakaki S, Nakao Y. J Am Chem Soc, 2017, 139: 9423–9426

    Article  CAS  Google Scholar 

  13. Asahara KK, Okita T, Saito AN, Muto K, Nakao Y, Yamaguchi J. Org Lett, 2019, 21: 4721–4724

    Article  CAS  Google Scholar 

  14. Chen K, Chen W, Yi X, Chen W, Liu M, Wu H. Chem Commun, 2019, 55: 9287–9290

    Article  CAS  Google Scholar 

  15. Kashihara M, Zhong RL, Semba K, Sakaki S, Nakao Y. Chem Commun, 2019, 55: 9291–9294

    Article  CAS  Google Scholar 

  16. Okita T, Asahara KK, Muto K, Yamaguchi J. Org Lett, 2020, 22: 3205–3208

    Article  CAS  Google Scholar 

  17. Feng B, Yang Y, You J. Chem Commun, 2020, 56: 790–793

    Article  CAS  Google Scholar 

  18. Feng B, Yang Y, You J. Chem Sci, 2020, 11: 6031–6035

    Article  CAS  Google Scholar 

  19. Zhou F, Zhou F, Su R, Yang Y, You J. Chem Sci, 2020, 11: 7424–7428

    Article  CAS  Google Scholar 

  20. Li Z, Peng Y, Wu T. Org Lett, 2021, 23: 881–885

    Article  CAS  Google Scholar 

  21. Inoue F, Kashihara M, Yadav MR, Nakao Y. Angew Chem Int Ed, 2017, 56: 13307–13309

    Article  CAS  Google Scholar 

  22. Chen W, Chen K, Chen W, Liu M, Wu H. ACS Catal, 2019, 9: 8110–8115

    Article  CAS  Google Scholar 

  23. Kashihara M, Yadav MR, Nakao Y. Org Lett, 2018, 20: 1655–1658

    Article  CAS  Google Scholar 

  24. Peng L, Hu Z, Tang Z, Jiao Y, Xu X. Chin Chem Lett, 2019, 30: 1481–1487

    Article  CAS  Google Scholar 

  25. Muto K, Okita T, Yamaguchi J. ACS Catal, 2020, 10: 9856–9871

    Article  CAS  Google Scholar 

  26. Kashihara M, Nakao Y. Acc Chem Res, 2021, 54: 2928–2935

    Article  CAS  Google Scholar 

  27. Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials. 2nd ed. Weinheim: Wiley-VCH, 2011

    Book  Google Scholar 

  28. Mo F, Jiang Y, Qiu D, Zhang Y, Wang J. Angew Chem Int Ed, 2010, 49: 1846–1849

    Article  CAS  Google Scholar 

  29. Mo F, Qiu D, Zhang L, Wang J. Chem Rev, 2021, 121: 5741–5829

    Article  CAS  Google Scholar 

  30. Cao ZC, Li XL, Luo QY, Fang H, Shi ZJ. Org Lett, 2018, 20: 1995–1998

    Article  CAS  Google Scholar 

  31. Shiozuka A, Sekine K, Kuninobu Y. Org Lett, 2021, 23: 4774–4778

    Article  CAS  Google Scholar 

  32. Ji S, Qin S, Yin C, Luo L, Zhang H. Org Lett, 2022, 24: 64–68

    Article  CAS  Google Scholar 

  33. Shiozuka A, Sekine K, Toki T, Kawashima K, Mori T, Kuninobu Y. Org Lett, 2022, 24: 4281–4285

    Article  CAS  Google Scholar 

  34. Tobisu M, Nakamura K, Chatani N. J Am Chem Soc, 2014, 136: 5587–5590

    Article  CAS  Google Scholar 

  35. Zhang H, Hagihara S, Itami K. Chem Eur J, 2015, 21: 16796–16800

    Article  CAS  Google Scholar 

  36. Hu J, Sun H, Cai W, Pu X, Zhang Y, Shi Z. J Org Chem, 2016, 81: 14–24

    Article  CAS  Google Scholar 

  37. Mfuh AM, Doyle JD, Chhetri B, Arman HD, Larionov OV. J Am Chem Soc, 2016, 138: 2985–2988

    Article  CAS  Google Scholar 

  38. Jin S, Dang HT, Haug GC, He R, Nguyen VD, Nguyen VT, Arman HD, Schanze KS, Larionov OV. J Am Chem Soc, 2020, 142: 1603–1613

    Article  CAS  Google Scholar 

  39. Kong X, Lin L, Chen Q, Xu B. Org Chem Front, 2021, 8: 702–707

    Article  CAS  Google Scholar 

  40. Ma Y, Pang Y, Chabbra S, Reijerse EJ, Schnegg A, Niski J, Leutzsch M, Cornella J. Chem Eur J, 2020, 26: 3738–3743

    Article  CAS  Google Scholar 

  41. Du L, Sun L, Zhang H. Chem Commun, 2022, 58: 1716–1719

    Article  CAS  Google Scholar 

  42. Wang M, Shi Z. Chem Rev, 2020, 120: 7348–7398

    Article  CAS  Google Scholar 

  43. Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Chem Rev, 2021, 121: 3561–3597

    Article  CAS  Google Scholar 

  44. Francke R, Little RD. Chem Soc Rev, 2014, 43: 2492–2521

    Article  CAS  Google Scholar 

  45. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    Article  CAS  Google Scholar 

  46. Moeller KD. Chem Rev, 2018, 118: 4817–4833

    Article  CAS  Google Scholar 

  47. Yuan Y, Lei A. Acc Chem Res, 2019, 52: 3309–3324

    Article  CAS  Google Scholar 

  48. Xiong P, Xu HC. Acc Chem Res, 2019, 52: 3339–3350

    Article  CAS  Google Scholar 

  49. Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc Chem Res, 2020, 53: 45–61

    Article  Google Scholar 

  50. Ackermann L. Acc Chem Res, 2020, 53: 84–104

    Article  CAS  Google Scholar 

  51. Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Acc Chem Res, 2020, 53: 300–310

    Article  CAS  Google Scholar 

  52. Siu JC, Fu N, Lin S. Acc Chem Res, 2020, 53: 547–560

    Article  CAS  Google Scholar 

  53. Wang F, Stahl SS. Acc Chem Res, 2020, 53: 561–574

    Article  CAS  Google Scholar 

  54. Hong J, Liu Q, Li F, Bai G, Liu G, Li M, Nayal OS, Fu X, Mo F. Chin J Chem, 2019, 37: 347–351

    Article  CAS  Google Scholar 

  55. Barton LM, Chen L, Blackmond DG, Baran PS. Proc Natl Acad Sci USA, 2021, 118: e2109408118

    Article  CAS  Google Scholar 

  56. Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. J Am Chem Soc, 2021, 143: 12985–12991

    Article  CAS  Google Scholar 

  57. Dai JJ, Teng XX, Fang W, Xu J, Xu HJ. Chin Chem Lett, 2022, 33: 1555–1558

    Article  CAS  Google Scholar 

  58. Lu H, Geng Z, Li J, Zou D, Wu Y, Wu Y. Org Lett, 2016, 18: 2774–2776

    Article  CAS  Google Scholar 

  59. Yang K, Zhou F, Kuang Z, Gao G, Driver TG, Song Q. Org Lett, 2016, 18: 4088–4091

    Article  CAS  Google Scholar 

  60. Zhou Y, Zhou H, Liu S, Pi D, Shen G. Tetrahedron, 2017, 73: 3898–3904

    Article  CAS  Google Scholar 

  61. Chen D, Zhou Y, Zhou H, Liu S, Liu Q, Zhang K, Uozumi Y. Synlett, 2018, 29: 1765–1768

    Article  CAS  Google Scholar 

  62. Du HC, Simmons N, Faver JC, Yu Z, Palaniappan M, Riehle K, Matzuk MM. Org Lett, 2019, 21: 2194–2199

    Article  CAS  Google Scholar 

  63. Hosoya H, Misal Castro LC, Sultan I, Nakajima Y, Ohmura T, Sato K, Tsurugi H, Suginome M, Mashima K. Org Lett, 2019, 21: 9812–9817

    Article  CAS  Google Scholar 

  64. Kallitsakis MG, Ioannou DI, Terzidis MA, Kostakis GE, Lykakis IN. Org Lett, 2020, 22: 4339–4343

    Article  CAS  Google Scholar 

  65. Wang B, Ma J, Ren H, Lu S, Xu J, Liang Y, Lu C, Yan H. Chin Chem Lett, 2022, 33: 2420–2424

    Article  CAS  Google Scholar 

  66. Yan G, Huang D, Wu X. Adv Synth Catal, 2018, 360: 1040–1053

    Article  CAS  Google Scholar 

  67. Friese FW, Studer A. Chem Sci, 2019, 10: 8503–8518

    Article  CAS  Google Scholar 

  68. Liu Q, Zhang L, Mo F. Acta Chim Sin, 2020, 78: 1297–1308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21602096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Cai or Hua Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Zhang, B., Ji, S. et al. Electrochemical borylation of nitroarenes. Sci. China Chem. 66, 534–539 (2023). https://doi.org/10.1007/s11426-022-1470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1470-8

Keywords

Navigation