Skip to main content
Log in

How temperature and hydrostatic pressure impact organic room temperature phosphorescence from H-aggregation of planar triarylboranes and the application in bioimaging

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Highly efficient persistent organic room temperature phosphorescence (RTP) has attracted increasing attention because of promising applications in fields of chemical sensors, optoelectronic devices, information security, and bioimaging, etc. Wherein, the crystal engineering of H-aggregation offers stabilization for long-lived triplet exciton for RTP, but the related research is rare because of the scarcity of ideal phosphorescent H-aggregate. Herein, we designed planar tricoordinate organoboron derivatives with molecular arrangement in ideal H-aggregation. The integration of Br atom can largely enhance RTP efficiency through increasing SOC effect, while the antiparallel molecular arrangement causes annihilation of triplet exciton. Thanks to good self-assembly property, their RTP can even be observed in PMMA matrix with doping ratio of merely 1 wt%. We further found that the cryogenic temperature contributes to stabilizing triplet exciton in H-aggregation, leading to red-shifted phosphorescence. By applying high hydrostatic pressure, the phosphorescence was largely enhanced and redshifted, demonstrating the crucial role of H-aggregation on RTP property. In phosphorescent tissue imaging of live mouse, nanoparticles of BrBA exhibited high contrast image via eliminating the interference of autofluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Chem Rev, 2018, 118: 1770–1839

    Article  CAS  PubMed  Google Scholar 

  2. Gmelch M, Achenbach T, Tomkeviciene A, Reineke S. Adv Sci, 2021, 8: 2102104

    Article  CAS  Google Scholar 

  3. Kabe R, Adachi C. Nature, 2017, 550: 384–387

    Article  CAS  PubMed  Google Scholar 

  4. Wang XF, Xiao H, Chen PZ, Yang QZ, Chen B, Tung CH, Chen YZ, Wu LZ. J Am Chem Soc, 2019, 141: 5045–5050

    Article  CAS  PubMed  Google Scholar 

  5. Cai S, Ma H, Shi H, Wang H, Wang X, Xiao L, Ye W, Huang K, Cao X, Gan N, Ma C, Gu M, Song L, Xu H, Tao Y, Zhang C, Yao W, An Z, Huang W. Nat Commun, 2019, 10: 4247

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang Q, Fan Y, Liao Q, Zhong C, Li Q, Li Z. Sci China Chem, 2022, 65: 918–925

    Article  CAS  Google Scholar 

  7. Liu R, Jiang T, Liu D, Ma X. Sci China Chem, 2022, 65: 1100–1104

    Article  CAS  Google Scholar 

  8. Dang Q, Jiang Y, Wang J, Wang J, Zhang Q, Zhang M, Luo S, Xie Y, Pu K, Li Q, Li Z. Adv Mater, 2020, 32: 2006752

    Article  Google Scholar 

  9. Gao H, Gao Z, Jiao D, Zhang J, Li X, Tang Q, Shi Y, Ding D. Small, 2021, 17: 2005449

    Article  CAS  Google Scholar 

  10. Yang J, Zhang Y, Wu X, Dai W, Chen D, Shi J, Tong B, Peng Q, Xie H, Cai Z, Dong Y, Zhang X. Nat Commun, 2021, 12: 4883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Yang J, Fang M, Yu Y, Zou B, Wang L, Tian Y, Cheng J, Tang BZ, Li Z. Matter, 2020, 3: 449–463

    Article  Google Scholar 

  12. Tao S, Lu S, Geng Y, Zhu S, Redfern SAT, Song Y, Feng T, Xu W, Yang B. Angew Chem Int Ed, 2018, 57: 2393–2398

    Article  CAS  Google Scholar 

  13. Kenry, Chen C, Liu B. Nat Commun, 2019, 10: 2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dou X, Zhu T, Wang Z, Sun W, Lai Y, Sui K, Tan Y, Zhang Y, Yuan WZ. Adv Mater, 2020, 32: 2004768

    Article  CAS  Google Scholar 

  15. Singh M, Liu K, Qu S, Ma H, Shi H, An Z, Huang W. Adv Opt Mater, 2021, 9: 2002197

    Article  CAS  Google Scholar 

  16. Yao X, Shi H, Wang X, Wang H, Li Q, Li Y, Liang J, Li J, He Y, Ma H, Huang W, An Z. Sci China Chem, 2022, 65: 1538–1543

    Article  CAS  Google Scholar 

  17. Garain S, Ansari SN, Kongasseri AA, Chandra Garain B, Pati SK, George SJ. Chem Sci, 2022, 13: 10011–10019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garain S, Wagalgave SM, Kongasseri AA, Garain BC, Ansari SN, Sardar G, Kabra D, Pati SK, George SJ. J Am Chem Soc, 2022, 144: 10854–10861

    Article  CAS  PubMed  Google Scholar 

  19. Gan N, Shi H, An Z, Huang W. Adv Funct Mater, 2018, 28: 1802657

    Article  Google Scholar 

  20. Zhao W, He Z, Tang BZ. Nat Rev Mater, 2020, 5: 869–885

    Article  CAS  Google Scholar 

  21. Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z. Adv Mater, 2017, 29: 1606829

    Article  Google Scholar 

  22. Li Q, Li Z. Acc Chem Res, 2020, 53: 962–973

    Article  CAS  PubMed  Google Scholar 

  23. EI-sayed MA. Nature, 1963, 197: 481–482

    Article  CAS  Google Scholar 

  24. Li S, Fu L, Xiao X, Geng H, Liao Q, Liao Y, Fu H. Angew Chem Int Ed, 2021, 60: 18059–18064

    Article  CAS  Google Scholar 

  25. An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690

    Article  CAS  PubMed  Google Scholar 

  26. Chaudhuri D, Li D, Che Y, Shafran E, Gerton JM, Zang L, Lupton JM. Nano Lett, 2011, 11: 488–492

    Article  CAS  PubMed  Google Scholar 

  27. Cai K, Xie J, Zhang D, Shi W, Yan Q, Zhao D. J Am Chem Soc, 2018, 140: 5764–5773

    Article  CAS  PubMed  Google Scholar 

  28. Shoji Y, Ikabata Y, Wang Q, Nemoto D, Sakamoto A, Tanaka N, Seino J, Nakai H, Fukushima T. J Am Chem Soc, 2017, 139: 2728–2733

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Xu S, Wang Z, Xue P, Wang W, Zhang L, Shi Y, Huang W, Chen R. Angew Chem Int Ed, 2021, 60: 17094–17101

    Article  Google Scholar 

  30. Zheng H, Cao P, Wang Y, Lu X, Wu P. Angew Chem Int Ed, 2021, 60: 9500–9506

    Article  CAS  Google Scholar 

  31. Che W, Gong Y, Tu L, Han M, Li X, Xie Y, Li Z. Phys Chem Chem Phys, 2020, 22: 21445–21452

    Article  CAS  PubMed  Google Scholar 

  32. Wu Z, Nitsch J, Schuster J, Friedrich A, Edkins K, Loebnitz M, Dinkelbach F, Stepanenko V, Würthner F, Marian CM, Ji L, Marder TB. Angew Chem Int Ed, 2020, 59: 17137–17144

    Article  Google Scholar 

  33. Chai Z, Wang C, Wang J, Liu F, Xie Y, Zhang YZ, Li JR, Li Q, Li Z. Chem Sci, 2017, 8: 8336–8344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamzehpoor E, Perepichka DF. Angew Chem Int Ed, 2020, 59: 9977–9981

    Article  CAS  Google Scholar 

  35. Narushima K, Kiyota Y, Mori T, Hirata S, Vacha M. Adv Mater, 2019, 31: 1807268

    Article  Google Scholar 

  36. Xie Y, Li Z. Natl Sci Rev, 2021, 8: nwaa199

    Article  PubMed  Google Scholar 

  37. Ikeda N, Oda S, Matsumoto R, Yoshioka M, Fukushima D, Yoshiura K, Yasuda N, Hatakeyama T. Adv Mater, 2020, 32: 2004072

    Article  CAS  Google Scholar 

  38. Oda S, Sugitani T, Tanaka H, Tabata K, Kawasumi R, Hatakeyama T. Adv Mater, 2022, 34: 2201778

    Article  CAS  Google Scholar 

  39. Kim HJ, Kang H, Jeong J, Park SH, Koh CW, Kim CW, Woo HY, Cho MJ, Park S, Choi DH. Adv Funct Mater, 2021, 31: 2102588

    Article  CAS  Google Scholar 

  40. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  41. Wang L, Ye KQ, Zhang HY. Chin Chem Lett, 2016, 27: 1367–1375

    Article  CAS  Google Scholar 

  42. Cai W, Zhang R, Yao Y, Deemyad S. Phys Chem Chem Phys, 2017, 19: 6216–6223

    Article  CAS  PubMed  Google Scholar 

  43. Dai Y, Liu H, Geng T, Ke F, Niu S, Wang K, Qi Y, Zou B, Yang B, Mao WL, Lin Y. J Mater Chem C, 2021, 9: 934–938

    Article  CAS  Google Scholar 

  44. Dong Y, Xu B, Zhang J, Tan X, Wang L, Chen J, Lv H, Wen S, Li B, Ye L, Zou B, Tian W. Angew Chem Int Ed, 2012, 51: 10782–10785

    Article  CAS  Google Scholar 

  45. Li N, Gu Y, Chen Y, Zhang L, Zeng Q, Geng T, Wu L, Jiang L, Xiao G, Wang K, Zou B. J Phys Chem C, 2019, 123: 6763–6767

    Article  CAS  Google Scholar 

  46. Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S. J Am Chem Soc, 2013, 135: 10322–10325

    Article  CAS  PubMed  Google Scholar 

  47. Qi Q, Qian J, Tan X, Zhang J, Wang L, Xu B, Zou B, Tian W. Adv Funct Mater, 2015, 25: 4005–4010

    Article  CAS  Google Scholar 

  48. Wang X, Qi C, Fu Z, Zhang H, Wang J, Feng HT, Wang K, Zou B, Lam JWY, Tang BZ. Mater Horiz, 2021, 8: 630–638

    Article  CAS  PubMed  Google Scholar 

  49. Li A, Li F, Chen Y, Xie Y, Li X, Liu X, Xu S, Xu W, Wang J, Li Z. ACS Mater Lett, 2022, 4: 2151–2158

    Article  CAS  Google Scholar 

  50. Fang M, Yang J, Li Z. Prog Mater Sci, 2022, 125: 100914

    Article  CAS  Google Scholar 

  51. Raveendran S, Sen A, Maekawa T, Kumar DS. Small Struct, 2021, 2: 2000145

    Article  CAS  Google Scholar 

  52. Fan Y, Liu S, Wu M, Xiao L, Fan Y, Han M, Chang K, Zhang Y, Zhen X, Li Q, Li Z. Adv Mater, 2022, 34: 2201280

    Article  CAS  Google Scholar 

  53. Wang Y, Yang J, Gong Y, Fang M, Li Z, Tang B. SmartMat, 2020, 1: e1006

    Google Scholar 

  54. Yang J, Fang M, Li Z. Aggregate, 2020, 1: 6–18

    Article  Google Scholar 

  55. Wang J, Dang Q, Gong Y, Liao Q, Song G, Li Q, Li Z. CCS Chem, 2021, 3: 274–286

    Article  CAS  Google Scholar 

  56. Huang A, Li Q, Li Z. Chinese J Chem, 2022, 40: 2356–2370

    Article  CAS  Google Scholar 

  57. Wang J, Li Z. Acta Chim Sin, 2021, 79: 575–587

    Article  CAS  Google Scholar 

  58. Yang J, Zhen X, Wang B, Gao X, Ren Z, Wang J, Xie Y, Li J, Peng Q, Pu K, Li Z. Nat Commun, 2018, 9: 840

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gu J, Li Z, Li Q. Coord Chem Rev, 2023, 475: 214872

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21905198) and the Starting Grants of Tianjin University, Tianjin Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujun Xie or Zhen Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2022_1469_MOESM1_ESM.pdf

How Temperature and Hydrostatic Pressure Impact Organic Room Temperature Phosphorescence from H-aggregation of Planar Triarylboranes and the Application in Bioimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, L., Fan, Y., Bi, C. et al. How temperature and hydrostatic pressure impact organic room temperature phosphorescence from H-aggregation of planar triarylboranes and the application in bioimaging. Sci. China Chem. 66, 816–825 (2023). https://doi.org/10.1007/s11426-022-1469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1469-2

Keywords

Navigation