Skip to main content
Log in

Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The large energetic disorder has been regarded as a limitation for the further advance of organic solar cells (OSCs). The intramolecular energetic disorder, which originates from the molecular conformational diversity, is quite different for various non-fused-ring materials and of great importance for the corresponding device performance. In this work, the 2-ethylhexyl on A4T-16, an efficient completely non-fused-ring acceptor, is replaced with the 3-ethylheptyl to obtain a novel acceptor of A4T-3. The out-shifted branching position of 3-ethylheptyl reduces the steric hindrance effect, endowing A4T-3 with a more coplanar structure. As a result, A4T-3 exhibits a lower intramolecular energetic disorder than A4T-16, leading to a more uniform surface-electrostatic potential (ESP) distribution. Therefore, A4T-3 exhibits a smaller barrier for intramolecular electron transport and a higher electron mobility. Meanwhile, the lower ESP endows A4T-3 with reduced non-radiative energy loss when blending with the donor. When using PTVT-T as the donor, the A4T-3-based OSC exhibited comprehensively improved photovoltaic properties in comparison with the A4T-16-based one, delivering a high power conversion efficiency (PCE) of 14.26%. Notably, this is the first report of OSCs where both the donor and the acceptor are completely non-fused-ring materials. According to the material-only cost (MOC) evaluation, the cost of PTVT-T:A4T-3-based device is much lower than that of other high-performance OSCs, revealing the great potential of completely non-fused-ring photoactive materials for application-oriented OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    CAS  Google Scholar 

  2. Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem Rev, 2014, 114: 7006–7043

    CAS  Google Scholar 

  3. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    CAS  Google Scholar 

  4. Tong Y, Xiao Z, Du X, Zuo C, Li Y, Lv M, Yuan Y, Yi C, Hao F, Hua Y, Lei T, Lin Q, Sun K, Zhao D, Duan C, Shao X, Li W, Yip HL, Xiao Z, Zhang B, Bian Q, Cheng Y, Liu S, Cheng M, Jin Z, Yang S, Ding L. Sci China Chem, 2020, 63: 758–765

    CAS  Google Scholar 

  5. Inganäs O. Adv Mater, 2018, 30: 1800388

    Google Scholar 

  6. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: 2102420

    CAS  Google Scholar 

  7. Wang J, Zheng Z, Zu Y, Wang Y, Liu X, Zhang S, Zhang M, Hou J. Adv Mater, 2021, 33: 2102787

    CAS  Google Scholar 

  8. Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171–184

    CAS  Google Scholar 

  9. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 224–268

    CAS  Google Scholar 

  10. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497

    CAS  Google Scholar 

  11. Garcia-Belmonte G, Bisquert J. Appl Phys Lett, 2010, 96: 113301

    Google Scholar 

  12. Blakesley JC, Neher D. Phys Rev B, 2011, 84: 075210

    Google Scholar 

  13. He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015, 9: 174–179

    CAS  Google Scholar 

  14. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A. Nat Mater, 2013, 12: 1038–1044

    CAS  Google Scholar 

  15. Collins SD, Proctor CM, Ran NA, Nguyen TQ. Adv Energy Mater, 2016, 6: 1501721

    Google Scholar 

  16. Shi X, Nádaždy V, Perevedentsev A, Frost JM, Wang X, von Hauff E, MacKenzie RC, Nelson J. Phys Rev X, 2019, 9: 021038

    CAS  Google Scholar 

  17. Heumueller T, Burke TM, Mateker WR, Sachs-Quintana IT, Vandewal K, Brabec CJ, McGehee MD. Adv Energy Mater, 2015, 5: 1500111

    Google Scholar 

  18. Lee C, Lee JH, Lee HH, Nam M, Ko DH. Adv Energy Mater, 2022, 12: 2200275

    CAS  Google Scholar 

  19. Lee C, Yi A, Kim HJ, Nam M, Ko DH. Adv Energy Sustain Res, 2021, 2: 2100041

    Google Scholar 

  20. Xie S, Xia Y, Zheng Z, Zhang X, Yuan J, Zhou H, Zhang Y. Adv Funct Mater, 2018, 28: 1705659

    Google Scholar 

  21. Gao F, Himmelberger S, Andersson M, Hanifi D, Xia Y, Zhang S, Wang J, Hou J, Salleo A, Inganäs O. Adv Mater, 2015, 27: 3868–3873

    CAS  Google Scholar 

  22. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photonics, 2020, 14: 300–305

    CAS  Google Scholar 

  23. Yuan J, Zhang C, Chen H, Zhu C, Cheung SH, Qiu B, Cai F, Wei Q, Liu W, Yin H, Zhang R, Zhang J, Liu Y, Zhang H, Liu W, Peng H, Yang J, Meng L, Gao F, So S, Li Y, Zou Y. Sci China Chem, 2020, 63: 1159–1168

    CAS  Google Scholar 

  24. Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu R, Shin TJ, Woo HY, Hou J. Adv Mater, 2016, 28: 9416–9422

    CAS  Google Scholar 

  25. Yang C, Zhang S, Ren J, Gao M, Bi P, Ye L, Hou J. Energy Environ Sci, 2020, 13: 2864–2869

    CAS  Google Scholar 

  26. Yang M, Wei W, Zhou X, Wang Z, Duan C. Energy Mater, 2021, 1: 100008

    Google Scholar 

  27. Yang C, Zhang S, Hou J. Aggregate, 2022, 3: e111

    Google Scholar 

  28. Chen YN, Li M, Wang Y, Wang J, Zhang M, Zhou Y, Yang J, Liu Y, Liu F, Tang Z, Bao Q, Bo Z. Angew Chem Int Ed, 2020, 59: 22714–22720

    CAS  Google Scholar 

  29. Li C, Zhang X, Yu N, Gu X, Qin L, Wei Y, Liu X, Zhang J, Wei Z, Tang Z, Shi Q, Huang H. Adv Funct Mater, 2021, 32: 2108861

    Google Scholar 

  30. Xiao J, Jia X, Duan C, Huang F, Yip HL, Cao Y. Adv Mater, 2021, 33: 2008158

    CAS  Google Scholar 

  31. Yuan X, Zhao Y, Xie D, Pan L, Liu X, Duan C, Huang F, Cao Y. Joule, 2022, 6: 647–661

    CAS  Google Scholar 

  32. Yang C, Zhang S, Ren J, Bi P, Yuan X, Hou J. Chin Chem Lett, 2021, 32: 2274–2278

    CAS  Google Scholar 

  33. Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H. Nat Commun, 2019, 10: 2152

    Google Scholar 

  34. Wen TJ, Liu ZX, Chen Z, Zhou J, Shen Z, Xiao Y, Lu X, Xie Z, Zhu H, Li CZ, Chen H. Angew Chem Int Ed, 2021, 60: 12964–12970

    CAS  Google Scholar 

  35. Ma L, Zhang S, Zhu J, Wang J, Ren J, Zhang J, Hou J. Nat Commun, 2021, 12: 5093

    CAS  Google Scholar 

  36. Lu H, Wang X, Wang H, Zhang A, Zheng X, Yu N, Tang Z, Xu X, Liu Y, Chen YN, Bo Z. Sci China Chem, 2022, 65: 594–601

    CAS  Google Scholar 

  37. Li J, Li H, Ma L, Xu Y, Cui Y, Wang J, Ren J, Zhu J, Zhang S, Hou J. Small Methods, 2022, 6: 2200007

    CAS  Google Scholar 

  38. Ren J, Bi P, Zhang J, Liu J, Wang J, Xu Y, Wei Z, Zhang S, Hou J. Natl Sci Rev, 2021, 8: nwab031

    CAS  Google Scholar 

  39. Swick SM, Zhu W, Matta M, Aldrich TJ, Harbuzaru A, Lopez Navarrete JT, Ponce Ortiz R, Kohlstedt KL, Schatz GC, Facchetti A, Melkonyan FS, Marks TJ. Proc Natl Acad Sci USA, 2018, 115: E8341–E8348

    CAS  Google Scholar 

  40. Aldrich TJ, Matta M, Zhu W, Swick SM, Stern CL, Schatz GC, Facchetti A, Melkonyan FS, Marks TJ. J Am Chem Soc, 2019, 141: 3274–3287

    CAS  Google Scholar 

  41. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    CAS  Google Scholar 

  42. Wu JL, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS. ACS Nano, 2011, 5: 959–967

    CAS  Google Scholar 

  43. Malliaras GG, Salem JR, Brock PJ, Scott C. Phys Rev B, 1998, 58: R13411–R13414

    CAS  Google Scholar 

  44. Mozer AJ, Sariciftci NS, Lutsen L, Vanderzande D, Österbacka R, Westerling M, Juška G. Appl Phys Lett, 2005, 86: 112104

    Google Scholar 

  45. Lenes M, Morana M, Brabec CJ, Blom PWM. Adv Funct Mater, 2009, 19: 1106–1111

    CAS  Google Scholar 

  46. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509

    Google Scholar 

  47. Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ. Phys Rev Lett, 2005, 94: 206601

    CAS  Google Scholar 

  48. Lee HKH, Li Z, Constantinou I, So F, Tsang SW, So SK. Adv Energy Mater, 2014, 4: 1400768

    Google Scholar 

  49. Urbach F. Phys Rev, 1953, 92: 1324

    CAS  Google Scholar 

  50. Nikolis VC, Mischok A, Siegmund B, Kublitski J, Jia X, Benduhn J, Hörmann U, Neher D, Gather MC, Spoltore D, Vandewal K. Nat Commun, 2019, 10: 3706

    Google Scholar 

  51. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Google Scholar 

  52. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, Wu H, Troughton J, Watson T, Bryant D, Nelson J. Phys Rev Appl, 2015, 4: 014020

    Google Scholar 

  53. Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089

    CAS  Google Scholar 

  54. Xu Y, Yao H, Ma L, Hong L, Li J, Liao Q, Zu Y, Wang J, Gao M, Ye L, Hou J. Angew Chem Int Ed, 2020, 59: 9004–9010

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the National Key Research and Development Program of China (2019YFE0116700), the Basic and Applied Basic Research Major Program of Guangdong Province (2019B030302007), and the National Natural Science Foundation of China (21835006 and 22075017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqing Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2022_1449_MOESM1_ESM.pdf

Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Ma, L., Xu, Y. et al. Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors. Sci. China Chem. 65, 2604–2612 (2022). https://doi.org/10.1007/s11426-022-1449-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1449-4

Keywords

Navigation