Skip to main content
Log in

Unravelling the critical role of surface Nafion adsorption in Pt-catalyzed oxygen reduction reaction by in situ electrical transport spectroscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Solid-state ionic conductor is a vital part in all electrochemical energy conversion devices. As a widely-applied proton-conducting polymer and stabilizer for electrode preparation, Nafion has key applications in electrochemical devices operated under acidic conditions. Specific adsorption of Nafion on the catalyst surface is considered to result in partial loss of intrinsic activity in reactions such as oxygen reduction reaction (ORR), due to its comprehensive occupation of active sites. Many in situ characterization methods such as voltammetric fingerprinting and spectroscopic approaches have been used to explore the dynamic adsorption of Nafion on the electrode surface. However, most of current efforts have been focused on the behaviors of Nafion itself, with little attention paid to its effects on the adsorption of surface intermediates. Here, we employed the in situ electrical transport spectroscopy (ETS) to investigate Nafion adsorption on Pt catalysts and its effects on the ORR intermediates. Our findings suggest that specific adsorption of Nafion results in the increased coverage of oxygen intermediates with weaker adsorption strength, which in turn plays a critical role in the reaction selectivity. The successful application of ETS on the dynamic characterization of reaction intermediates provides a novel perspective for catalyst design in ORR-related applications in future sustainable chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kusoglu A, Weber AZ. Chem Rev, 2017, 117: 987–1104

    Article  CAS  PubMed  Google Scholar 

  2. Kim YS, Lee KS. Polym Rev, 2015, 55: 330–370

    Article  CAS  Google Scholar 

  3. Tucker MC, Cho KT, Spingler FB, Weber AZ, Lin G. J Power Sources, 2015, 284: 212–221

    Article  CAS  Google Scholar 

  4. Perry ML, Weber AZ. J Electrochem Soc, 2016, 163: A5064–A5067

    Article  CAS  Google Scholar 

  5. Xiang C, Weber AZ, Ardo S, Berger A, Chen YK, Coridan R, Fountaine KT, Haussener S, Hu S, Liu R, Lewis NS, Modestino MA, Shaner MM, Singh MR, Stevens JC, Sun K, Walczak K. Angew Chem Int Ed, 2016, 55: 12974–12988

    Article  CAS  Google Scholar 

  6. Kongkanand A, Mathias MF. J Phys Chem Lett, 2016, 7: 1127–1137

    Article  CAS  PubMed  Google Scholar 

  7. Holdcroft S. Chem Mater, 2014, 26: 381–393

    Article  CAS  Google Scholar 

  8. Subbaraman R, Strmcnik D, Paulikas AP, Stamenkovic VR, Markovic NM. ChemPhysChem, 2010, 11: 2825–2833

    Article  CAS  PubMed  Google Scholar 

  9. Kodama K, Motobayashi K, Shinohara A, Hasegawa N, Kudo K, Jinnouchi R, Osawa M, Morimoto Y. ACS Catal, 2018, 8: 694–700

    Article  CAS  Google Scholar 

  10. Li Y, Intikhab S, Malkani A, Xu B, Snyder J. ACS Catal, 2020, 10: 7691–7698

    Article  CAS  Google Scholar 

  11. Subbaraman R, Strmcnik D, Stamenkovic V, Markovic NM. J Phys Chem C, 2010, 114: 8414–8422

    Article  CAS  Google Scholar 

  12. Sarapuu A, Hussain S, Kasikov A, Pollet BG, Tammeveski K. J Electroanal Chem, 2019, 848: 113292

    Article  CAS  Google Scholar 

  13. Kunimatsu K, Yoda T, Tryk DA, Uchida H, Watanabe M. Phys Chem Chem Phys, 2010, 12: 621–629

    Article  CAS  PubMed  Google Scholar 

  14. Hanawa H, Kunimatsu K, Watanabe M, Uchida H. J Phys Chem C, 2012, 116: 21401–21406

    Article  CAS  Google Scholar 

  15. Zeng J, Jean D, Ji C, Zou S. Langmuir, 2012, 28: 957–964

    Article  CAS  PubMed  Google Scholar 

  16. Yagi I, Inokuma K, Kimijima K, Notsu H. J Phys Chem C, 2014, 118: 26182–26190

    Article  CAS  Google Scholar 

  17. Ding M, He Q, Wang G, Cheng HC, Huang Y, Duan X. Nat Commun, 2015, 6: 7867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding M, Zhong G, Zhao Z, Huang Z, Li M, Shiu HY, Liu Y, Shakir I, Huang Y, Duan X. ACS Cent Sci, 2018, 4: 590–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mu Z, Yang M, He W, Pan Y, Zhang P, Li X, Wu X, Ding M. J Phys Chem Lett, 2020, 11: 5798–5806

    Article  CAS  PubMed  Google Scholar 

  20. Tian B, Shin H, Liu S, Fei M, Mu Z, Liu C, Pan Y, Sun Y, Goddard III WA, Ding M. Angew Chem Int Ed, 2021, 60: 16448–16456

    Article  CAS  Google Scholar 

  21. Liu S, Wang C, Wu J, Tian B, Sun Y, Lv Y, Mu Z, Sun Y, Li X, Wang F, Wang Y, Tang L, Wang P, Li Y, Ding M. ACS Catal, 2021, 11: 12476–12484

    Article  CAS  Google Scholar 

  22. He W, Zang H, Cai S, Mu Z, Liu C, Ding M, Wang P, Wang X. Nano Res, 2020, 13: 2917–2924

    Article  CAS  Google Scholar 

  23. Pan Y, Wang X, Zhang W, Tang L, Mu Z, Liu C, Tian B, Fei M, Sun Y, Su H, Gao L, Wang P, Duan X, Ma J, Ding M. Nat Commun, 2022, 13: 3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Angerstein-Kozlowska H, Conway BE, Sharp WBA. J Electroanal Chem Interfacial Electrochem, 1973, 43: 9–36

    Article  CAS  Google Scholar 

  25. Conway BE, Gottesfeld S. J Chem Soc Faraday Trans 1, 1973, 69: 1090–1107

    Article  CAS  Google Scholar 

  26. Tilak BV, Conway BE, Angerstein-Kozlowska H. J Electroanal Chem Interfacial Electrochem, 1973, 48: 1–23

    Article  CAS  Google Scholar 

  27. Dong JC, Zhang XG, Briega-Martos V, Jin X, Yang J, Chen S, Yang ZL, Wu DY, Feliu JM, Williams CT, Tian ZQ, Li JF. Nat Energy, 2019, 4: 60–67

    Article  CAS  Google Scholar 

  28. Dong JC, Su M, Briega-Martos V, Li L, Le JB, Radjenovic P, Zhou XS, Feliu JM, Tian ZQ, Li JF. J Am Chem Soc, 2020, 142: 715–719

    Article  CAS  PubMed  Google Scholar 

  29. Katsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJJ. Phys Chem Chem Phys, 2012, 14: 7384–7391

    Article  CAS  PubMed  Google Scholar 

  30. Yu TH, Sha Y, Liu WG, Merinov BV, Shirvanian P, Goddard III WA. J Am Chem Soc, 2011, 133: 19857–19863

    Article  CAS  PubMed  Google Scholar 

  31. Luo M, Koper MTM. Nat Catal, 2022, 5: 615–623

    Article  CAS  Google Scholar 

  32. Xia C, Kim JY, Wang H. Nat Catal, 2020, 3: 605–607

    Article  CAS  Google Scholar 

  33. Ding Y, Zhou W, Xie L, Chen S, Gao J, Sun F, Zhao G, Qin Y. Mater Chem A, 2021, 9: 15948–15954

    Article  CAS  Google Scholar 

  34. Yuan Q, Zhao J, Mok DH, Zheng Z, Ye Y, Liang C, Zhou L, Back S, Jiang K. Nano Lett, 2022, 22: 1257–1264

    Article  CAS  PubMed  Google Scholar 

  35. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A. Nat Chem, 2010, 2: 454–460

    Article  CAS  PubMed  Google Scholar 

  36. Stephens IEL, Bondarenko AS, Perez-Alonso FJ, Calle-Vallejo F, Bech L, Johansson TP, Jepsen AK, Frydendal R, Knudsen BP, Rossmeisl J, Chorkendorff I. J Am Chem Soc, 2011, 133: 5485–5491

    Article  CAS  PubMed  Google Scholar 

  37. Chen J, Finfrock YZ, Wang Z, Sham TK. Sci Rep, 2021, 11: 13698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tymoczko J, Calle-Vallejo F, Colic V, Koper MTM, Schuhmann W, Bandarenka AS. ACS Catal, 2014, 4: 3772–3778

    Article  CAS  Google Scholar 

  39. Tymoczko J, Schuhmann W, Bandarenka AS. ChemElectroChem, 2014, 1: 213–219

    Article  Google Scholar 

  40. Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I. Energy Environ Sci, 2012, 5: 6744–6762

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (22172075 and 92156024), the Fundamental Research Funds for the Central Universities in China (14380273), Natural Science Foundation of Jiangsu Province (BK20220069), Beijing National Laboratory for Molecular Sciences (BNLMS202107), and the Thousand Talents Plan of Jiangxi Province (jxsq2019102002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengning Ding.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2022_1428_MOESM1_ESM.pdf

Unravelling the critical role of surface Nafion adsorption in Pt-catalyzed oxygen reduction reaction by in situ electrical transport spectroscopy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Tian, J., Mu, Z. et al. Unravelling the critical role of surface Nafion adsorption in Pt-catalyzed oxygen reduction reaction by in situ electrical transport spectroscopy. Sci. China Chem. 65, 2290–2298 (2022). https://doi.org/10.1007/s11426-022-1428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1428-6

Keywords

Navigation