Skip to main content
Log in

Approaching the uniaxiality of magnetic anisotropy in single-molecule magnets

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Single-molecule magnets (SMMs), which can exhibit slow magnetization relaxation and bulk-magnet-like hysteresis of purely molecular origin, are promising candidates for high-density information storage, molecular spintronics, and quantum computing. To realize their applications, it is crucial to improve the blocking temperature (TB) and the effective relaxation barrier (Ueff). Three decades of multidisciplinary research have yielded distinct SMMs with a state-of-the-art Ueff of up to 2,000 K and a TB of up to the liquid nitrogen region. Several strategies have been investigated and summarized, which revealed that enhancing the uniaxiality of magnetic anisotropy is critical for constructing high-performance SMMs. Therefore, magnetic anisotropy, a key property that connects the molecular structure symmetry and performance of SMMs, plays a fundamental role in dictating magneto-structural correlations. Understanding and employing magnetic anisotropy would be significantly beneficial for rationally designing high-performance SMMs. This review focuses on the magnetic anisotropy of SMMs. We illustrate the origin and manifestation of magnetic anisotropy in mononuclear 3d- and 4f-block metal complexes. We then introduce developed approaches to investigate magnetic anisotropy both theoretically and experimentally. Typical SMMs by optimizing uniaxial magnetic anisotropy through lanthanide metallocene, symmetry controlling, and low-coordination approaches are represented. Furthermore, the remaining challenges and opportunities in this field will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Vleck JH. Rev Mod Phys, 1978, 50: 181–189

    Article  CAS  Google Scholar 

  2. Carlin RL. Magnetochemistry. Berlin Heidelberg: Springer-Verlag, 1986

    Book  Google Scholar 

  3. Buschowand KHJ, de Boer FR. Physics of Magnetic Materials. New Jersey: World Scientific, 1985

    Google Scholar 

  4. Leuenberger MN, Loss D. Nature, 2001, 410: 789–793

    Article  CAS  PubMed  Google Scholar 

  5. Sessoli R, Gatteschi D, Caneschi A, Novak MA. Nature, 1993, 365: 141–143

    Article  CAS  Google Scholar 

  6. Sessoli R, Tsai HL, Schake AR, Wang S, Vincent JB, Folting K, Gatteschi D, Christou G, Hendrickson DN. J Am Chem Soc, 1993, 115: 1804–1816

    Article  CAS  Google Scholar 

  7. Friedman JR, Sarachik MP, Tejada J, Ziolo R. Phys Rev Lett, 1996, 76: 3830–3833

    Article  CAS  PubMed  Google Scholar 

  8. Thomas L, Lionti F, Ballou R, Gatteschi D, Sessoli R, Barbara B. Nature, 1996, 383: 145–147

    Article  CAS  Google Scholar 

  9. Gao S. Molecularnanomagnets and Related Phenomena. Berlin Heidelberg: Springer-Verlag, 2015

    Book  Google Scholar 

  10. Zhu Z, Guo M, Li XL, Tang J. Coord Chem Rev, 2019, 378: 350–364

    Article  CAS  Google Scholar 

  11. Frost JM, Harriman KLM, Murugesu M. Chem Sci, 2016, 7: 2470–2491

    Article  CAS  PubMed  Google Scholar 

  12. Zabala-Lekuona A, Seco JM, Colacio E. Coord Chem Rev, 2021, 441: 213984

    Article  CAS  Google Scholar 

  13. Gatteschi D, Sessoli R. Angew Chem Int Ed, 2003, 42: 268–297

    Article  CAS  Google Scholar 

  14. Goodwin CAP, Ortu F, Reta D. Int J Quant Chem, 2020, 120: 1–8

    Article  Google Scholar 

  15. Kahn O. Molecular Magnetism. New York: VCH Publishers, Inc., 1993

    Google Scholar 

  16. Boča R. Theoretical Foundations of Molecular Magnetism in Current Methods in Inorganic Chemistry. 1st ed, S A Lausanne: Elsevier Science, 1999

    Google Scholar 

  17. Waldmann O. Inorg Chem, 2007, 46: 10035–10037

    Article  CAS  PubMed  Google Scholar 

  18. Ruiz E, Cirera J, Cano J, Alvarez S, Loose C, Kortus J. Chem Commun, 2008, 52–54

  19. Neese F, Pantazis DA. Faraday Discuss, 2011, 148: 229–238

    Article  CAS  PubMed  Google Scholar 

  20. Aromi G, Brechin EK. Synthesis of 3d Single Molecule Magnets, Structure Bonding. Berlin: Springer, 2006. 1–67

    Google Scholar 

  21. Neese F. J Chem Phys, 2007, 127: 164112

    Article  PubMed  Google Scholar 

  22. Ishikawa N, Sugita M, Ishikawa T, Koshihara SY, Kaizu Y. J Am Chem Soc, 2003, 125: 8694–8695

    Article  CAS  PubMed  Google Scholar 

  23. Benelli C, Gatteschi D. Introduction to Molecular Magnetism-from Transition Metals to Lanthanides. Weinheim: Wiley-VCH, 2015

    Google Scholar 

  24. Woodruff DN, Winpenny REP, Layfield RA. Chem Rev, 2013, 113: 5110–5148

    Article  CAS  PubMed  Google Scholar 

  25. Ashebr TG, Li H, Ying X, Li XL, Zhao C, Liu S, Tang J. ACS Mater Lett, 2022, 4: 307–319

    Article  CAS  Google Scholar 

  26. Zhu Z, Tang J. Natl Sci Rev, 2022, doi: https://doi.org/10.1093/nsr/nwac194

  27. Caneschi A, Gatteschi D, Sessoli R, Barra AL, Brunel LC, Guillot M. J Am Chem Soc, 1991, 113: 5873–5874

    Article  CAS  Google Scholar 

  28. Marx R, Moro F, Dörfel M, Ungur L, Waters M, Jiang SD, Orlita M, Taylor J, Frey W, Chibotaru LF, van Slageren J. Chem Sci, 2014, 5: 3287–3293

    Article  CAS  Google Scholar 

  29. Barra AL, Debrunner P, Gatteschi D, Schulz CE, Sessoli R. Europhys Lett, 1996, 35: 133–138

    Article  CAS  Google Scholar 

  30. Long J, Rouquette J, Thibaud JM, Ferreira RAS, Carlos LD, Donnadieu B, Vieru V, Chibotaru LF, Konczewicz L, Haines J, Guari Y, Larionova J. Angew Chem Int Ed, 2015, 54: 2236–2240

    Article  CAS  Google Scholar 

  31. Moseley DH, Stavretis SE, Thirunavukkuarasu K, Ozerov M, Cheng Y, Daemen LL, Ludwig J, Lu Z, Smirnov D, Brown CM, Pandey A, Ramirez-Cuesta AJ, Lamb AC, Atanasov M, Bill E, Neese F, Xue ZL. Nat Commun, 2018, 9: 2572

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marx R, Moro F, Dörfel M, Ungur L, Waters M, Jiang S-D, Orlita M, Taylor J, Frey W, Chibotaru LF, van Slageren J. Chem Sci, 2014, 5: 2568–2572

    Article  Google Scholar 

  33. Sievers AJ, Tinkham M. Phys Rev, 1963, 129: 1995–2004

    Article  CAS  Google Scholar 

  34. Dunstan MA, Mole RA, Boskovic C. Eur J Inorg Chem, 2019, 2019: 1090–1105

    Article  CAS  Google Scholar 

  35. Abernathy DL, Stone MB, Loguillo MJ, Lucas MS, Delaire O, Tang X, Lin JYY, Fultz B. Rev Sci Instrum, 2012, 83: 015114

    Article  CAS  PubMed  Google Scholar 

  36. Caciuffo R, Amoretti G, Murani A, Sessoli R, Caneschi A, Gatteschi D. Phys Rev Lett, 1998, 81: 4744–4747

    Article  CAS  Google Scholar 

  37. Basler R, Boskovic C, Chaboussant G, Güdel HU, Murrie M, Ochsenbein ST, Sieber A. ChemPhysChem, 2003, 4: 910–926

    Article  PubMed  Google Scholar 

  38. Domingo N, Williamson BE, Gómez-Segura J, Gerbier P, Ruiz-Molina D, Amabilino DB, Veciana J, Tejada J. Phys Rev B, 2004, 69: 052405

    Article  Google Scholar 

  39. Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico AM, Arrio MA, Cornia A, Gatteschi D, Sessoli R. Nat Mater, 2009, 8: 194–197

    Article  CAS  PubMed  Google Scholar 

  40. Horrocks Jr. WDW, Hall DDW. Coord Chem Rev, 1971, 6: 147–186

    Article  CAS  Google Scholar 

  41. van Duyneveldt AJ. J Appl Phys, 1982, 53: 8006–8011

    Article  CAS  Google Scholar 

  42. Bernot K, Luzon J, Bogani L, Etienne M, Sangregorio C, Shanmugam M, Caneschi A, Sessoli R, Gatteschi D. J Am Chem Soc, 2009, 131: 5573–5579

    Article  CAS  PubMed  Google Scholar 

  43. Cucinotta G, Perfetti M, Luzon J, Etienne M, Car PE, Caneschi A, Calvez G, Bernot K, Sessoli R. Angew Chem Int Ed, 2012, 51: 1606–1610

    Article  CAS  Google Scholar 

  44. Qian K, Baldoví JJ, Jiang SD, Gaita-Ariño A, Zhang YQ, Overgaard J, Wang BW, Coronado E, Gao S. Chem Sci, 2015, 6: 4587–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu MX, Meng YS, Xiong J, Wang BW, Jiang SD, Gao S. Dalton Trans, 2018, 47: 1966–1971

    Article  CAS  PubMed  Google Scholar 

  46. Meng YS, Xiong J, Yang MW, Qiao YS, Zhong ZQ, Sun HL, Han JB, Liu T, Wang BW, Gao S. Angew Chem Int Ed, 2020, 59: 13037–13043

    Article  CAS  Google Scholar 

  47. Perfetti M, Cucinotta G, Boulon ME, El Hallak F, Gao S, Sessoli R. Chem Eur J, 2014, 20: 14051–14056

    Article  CAS  PubMed  Google Scholar 

  48. Rigamonti L, Cornia A, Nava A, Perfetti M, Boulon ME, Barra AL, Zhong X, Park K, Sessoli R. Phys Chem Chem Phys, 2014, 16: 17220–17230

    Article  CAS  PubMed  Google Scholar 

  49. Perfetti M, Lucaccini E, Sorace L, Costes JP, Sessoli R. Inorg Chem, 2015, 54: 3090–3092

    Article  CAS  PubMed  Google Scholar 

  50. Perfetti M, Serri M, Poggini L, Mannini M, Rovai D, Sainctavit P, Heutz S, Sessoli R. Adv Mater, 2016, 28: 6946–6951

    Article  CAS  PubMed  Google Scholar 

  51. Perfetti M. Coord Chem Rev, 2017, 348: 171–186

    Article  CAS  Google Scholar 

  52. Ridier K, Gillon B, Gukasov A, Chaboussant G, Cousson A, Luneau D, Borta A, Jacquot JF, Checa R, Chiba Y, Sakiyama H, Mikuriya M. Chem Eur J, 2016, 22: 724–735

    Article  CAS  PubMed  Google Scholar 

  53. Klahn EA, Gao C, Gillon B, Gukasov A, Fabrèges X, Piltz RO, Jiang SD, Overgaard J. Chem Eur J, 2018, 24: 16576–16581

    Article  CAS  PubMed  Google Scholar 

  54. Dougan BA, Xue ZL. Sci China Ser B-Chem, 2009, 52: 2083–2095

    Article  CAS  Google Scholar 

  55. Gukasov A, Brown PJ. J Phys-Condens Matter, 2002, 14: 8831–8839

    Article  CAS  Google Scholar 

  56. Craven M, Nygaard MH, Zadrozny JM, Long JR, Overgaard J. Inorg Chem, 2018, 57: 6913–6920

    Article  CAS  PubMed  Google Scholar 

  57. Thomsen MK, Nyvang A, Walsh JPS, Bunting PC, Long JR, Neese F, Atanasov M, Genoni A, Overgaard J. Inorg Chem, 2019, 58: 3211–3218

    Article  CAS  PubMed  Google Scholar 

  58. Damgaard-Moller E, Krause L, Tolborg K, Macetti G, Genoni A, Overgaard J. Angew Chem Int Ed, 2020, 59: 21203–21209

    Article  Google Scholar 

  59. Gao C, Genoni A, Gao S, Jiang S, Soncini A, Overgaard J. Nat Chem, 2020, 12: 213–219

    Article  CAS  PubMed  Google Scholar 

  60. Holladay A, Leung P, Coppens P. Acta Crystlogr Found Crystlogr, 1983, 39: 377–387

    Article  Google Scholar 

  61. Schilder H, Lueken H. J Magn Magn Mater, 2004, 281: 17–26

    Article  CAS  Google Scholar 

  62. Chibotaru LF, Ungur L. J Chem Phys, 2012, 137: 064112

    Article  CAS  PubMed  Google Scholar 

  63. Ungur L, Chibotaru LF. Phys Chem Chem Phys, 2011, 13: 20086–20090

    Article  CAS  PubMed  Google Scholar 

  64. Rinehart JD, Long JR. Chem Sci, 2011, 2: 2078–2085

    Article  CAS  Google Scholar 

  65. Baldoví JJ, Borrás-Almenar JJ, Clemente-Juan JM, Coronado E, Gaita-Ariño A. Dalton Trans, 2012, 41: 13705–13710

    Article  PubMed  Google Scholar 

  66. Baldoví JJ, Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A, Palii A. J Comput Chem, 2013, 34: 1961–1967

    Article  PubMed  Google Scholar 

  67. Aravena D, Ruiz E. Inorg Chem, 2013, 52: 13770–13778

    Article  CAS  PubMed  Google Scholar 

  68. Chilton NF, Collison D, McInnes EJL, Winpenny REP, Soncini A. Nat Commun, 2013, 4: 2551

    Article  PubMed  Google Scholar 

  69. van Leusen J, Speldrich M, Schilder H, Kögerler P. Coord Chem Rev, 2015, 289–290: 137–148

    Article  Google Scholar 

  70. Jiang SD, Qin SX. Inorg Chem Front, 2015, 2: 613–619

    Article  CAS  Google Scholar 

  71. Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez. Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R. J Comput Chem, 2016, 37: 506–541

    Article  CAS  PubMed  Google Scholar 

  72. Randall McClain K, Gould CA, Chakarawet K, Teat SJ, Groshens TJ, Long JR, Harvey BG. Chem Sci, 2018, 9: 8492–8503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo FS, Day BM, Chen YC, Tong ML, Mansikkamäki A, Layfield RA. Science, 2018, 362: 1400–1403

    Article  CAS  PubMed  Google Scholar 

  74. Chandrasekhar V, Pointillart F. Organometallic Magnets. Gewerbestrasse: Springer Nature, 2019

    Book  Google Scholar 

  75. Sievers J. Z Physik B — Condensed Matter, 1982, 45: 289–296

    Article  CAS  Google Scholar 

  76. Figgis BN. Introduction to Ligand Fields. New York: Wiley, 1966

    Google Scholar 

  77. Urland W, Kremer R, Furrer A. Chem Phys Lett, 1986, 132: 113–115

    Article  CAS  Google Scholar 

  78. Boča R. Coord Chem Rev, 2004, 248: 757–815

    Article  Google Scholar 

  79. Meng YS, Zhang YQ, Wang ZM, Wang BW, Gao S. Chem Eur J, 2016, 22: 12724–12731

    Article  CAS  PubMed  Google Scholar 

  80. Chen YC, Liu JL, Wernsdorfer W, Liu D, Chibotaru LF, Chen XM, Tong ML. Angew Chem Int Ed, 2017, 56: 4996–5000

    Article  CAS  Google Scholar 

  81. Zhang P, Zhang L, Wang C, Xue S, Lin SY, Tang J. J Am Chem Soc, 2014, 136: 4484–4487

    Article  CAS  PubMed  Google Scholar 

  82. Lu E, Chu J, Chen Y. Acc Chem Res, 2018, 51: 557–566

    Article  CAS  PubMed  Google Scholar 

  83. Wang C, Mao W, Xiang L, Yang Y, Fang J, Maron L, Leng X, Chen Y. Chem Eur J, 2018, 24: 13903–13917

    Article  CAS  PubMed  Google Scholar 

  84. Thomas-Hargreaves LR, Giansiracusa MJ, Gregson M, Zanda E, O’Donnell F, Wooles AJ, Chilton NF, Liddle ST. Chem Sci, 2021, 12: 3911–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ungur L, Thewissen M, Costes JP, Wernsdorfer W, Chibotaru LF. Inorg Chem, 2013, 52: 6328–6337

    Article  CAS  PubMed  Google Scholar 

  86. Ungur L, Van den Heuvel W, Chibotaru LF. New J Chem, 2009, 33: 1224–1230

    Article  CAS  Google Scholar 

  87. Meng YS, Mo Z, Wang BW, Zhang YQ, Deng L, Gao S. Chem Sci, 2015, 6: 7156–7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gerloch M, Mackey DJ. J Chem Soc Dalton, 1972, 415–418

  89. Mitra S. Prog Inorg Chem, 1977, 22: 309–408

    CAS  Google Scholar 

  90. Jiang SD, Wang BW, Sun HL, Wang ZM, Gao S. J Am Chem Soc, 2011, 133: 4730–4733

    Article  CAS  PubMed  Google Scholar 

  91. Boulon ME, Cucinotta G, Liu SS, Jiang SD, Ungur L, Chibotaru LF, Gao S, Sessoli R. Chem Eur J, 2013, 19: 13726–13731

    Article  CAS  PubMed  Google Scholar 

  92. Flanagan BM, Bernhardt PV, Krausz ER, Lüthi SR, Riley MJ. Inorg Chem, 2002, 41: 5024–5033

    Article  CAS  PubMed  Google Scholar 

  93. Lucaccini E, Sorace L, Perfetti M, Costes JP, Sessoli R. Chem Commun, 2014, 50: 1648–1651

    Article  CAS  Google Scholar 

  94. Kanesato M, Yokoyama T, Itabashi O, Suzuki TM, Shiro M. BCSJ, 1996, 69: 1297–1302

    Article  CAS  Google Scholar 

  95. Ungur L, Le Roy JJ, Korobkov I, Murugesu M, Chibotaru LF. Angew Chem Int Ed, 2014, 53: 4413–4417

    Article  CAS  Google Scholar 

  96. Meng YS, Wang CH, Zhang YQ, Leng XB, Wang BW, Chen YF, Gao S. Inorg Chem Front, 2016, 3: 828–835

    Article  CAS  Google Scholar 

  97. Chen SM, Xiong J, Zhang YQ, Yuan Q, Wang BW, Gao S. Chem Sci, 2018, 9: 7540–7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Münzfeld L, Schoo C, Bestgen S, Moreno-Pineda E, Köppe R, Ruben M, Roesky PW. Nat Commun, 2019, 10: 3135

    Article  PubMed  PubMed Central  Google Scholar 

  99. Day BM, Guo FS, Layfield RA. Acc Chem Res, 2018, 51: 1880–1889

    Article  CAS  PubMed  Google Scholar 

  100. Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP. Nature, 2017, 548: 439–442

    Article  CAS  PubMed  Google Scholar 

  101. Guo FS, Day BM, Chen YC, Tong ML, Mansikkamäki A, Layfield RA. Angew Chem Int Ed, 2017, 56: 11445–11449

    Article  CAS  Google Scholar 

  102. Liu JL, Chen YC, Tong ML. Chem Soc Rev, 2018, 47: 2431–2453

    Article  CAS  PubMed  Google Scholar 

  103. Liu JL, Chen YC, Zheng YZ, Lin WQ, Ungur L, Wernsdorfer W, Chibotaru LF, Tong ML. Chem Sci, 2013, 4: 3310–3316

    Article  CAS  Google Scholar 

  104. Chen YC, Liu JL, Ungur L, Liu J, Li QW, Wang LF, Ni ZP, Chibotaru LF, Chen XM, Tong ML. J Am Chem Soc, 2016, 138: 2829–2837

    Article  CAS  PubMed  Google Scholar 

  105. Liu J, Chen YC, Liu JL, Vieru V, Ungur L, Jia JH, Chibotaru LF, Lan Y, Wernsdorfer W, Gao S, Chen XM, Tong ML. J Am Chem Soc, 2016, 138: 5441–5450

    Article  CAS  PubMed  Google Scholar 

  106. Ding YS, Chilton NF, Winpenny REP, Zheng YZ. Angew Chem Int Ed, 2016, 55: 16071–16074

    Article  CAS  Google Scholar 

  107. Ding YS, Yu KX, Reta D, Ortu F, Winpenny REP, Zheng YZ, Chilton NF. Nat Commun, 2018, 9: 3134

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chilton NF, Goodwin CAP, Mills DP, Winpenny REP. Chem Commun, 2015, 51: 101–103

    Article  CAS  Google Scholar 

  109. Chilton NF. Inorg Chem, 2015, 54: 2097–2099

    Article  CAS  PubMed  Google Scholar 

  110. Xiong J, Ding HY, Meng YS, Gao C, Zhang XJ, Meng ZS, Zhang YQ, Shi W, Wang BW, Gao S. Chem Sci, 2017, 8: 1288–1294

    Article  CAS  PubMed  Google Scholar 

  111. Meng YS, Xu L, Xiong J, Yuan Q, Liu T, Wang BW, Gao S. Angew Chem Int Ed, 2018, 57: 4673–4676

    Article  CAS  Google Scholar 

  112. Wang C, Sun R, Chen Y, Wang BW, Wang ZM, Gao S. CCS Chem, 2020, 2: 362–368

    Article  CAS  Google Scholar 

  113. Tamm M, Petrovic D, Randoll S, Beer S, Bannenberg T, Jones PG, Grunenberg J. Org Biomol Chem, 2007, 5: 523–530

    Article  CAS  PubMed  Google Scholar 

  114. Liu BC, Ge N, Zhai YQ, Zhang T, Ding YS, Zheng YZ. Chem Commun, 2019, 55: 9355–9358

    Article  CAS  Google Scholar 

  115. Yao XN, Du JZ, Zhang YQ, Leng XB, Yang MW, Jiang SD, Wang ZX, Ouyang ZW, Deng L, Wang BW, Gao S. J Am Chem Soc, 2017, 139: 373–380

    Article  CAS  PubMed  Google Scholar 

  116. Bunting PC, Atanasov M, Damgaard-Møller E, Perfetti M, Crassee I, Orlita M, Overgaard J, van Slageren J, Neese F, Long JR. Science, 2018, 362: 1378

    Article  Google Scholar 

  117. Day BM, Guo FS, Giblin SR, Sekiguchi A, Mansikkamäki A, Layfield RA. Chem Eur J, 2018, 24: 16779–16782

    Article  CAS  PubMed  Google Scholar 

  118. Canaj AB, Dey S, Martí ER, Wilson C, Rajaraman G, Murrie M. Angew Chem Int Ed, 2019, 58: 14146–14151

    Article  CAS  Google Scholar 

  119. Zhu Z, Zhao C, Feng T, Liu X, Ying X, Li XL, Zhang YQ, Tang J. J Am Chem Soc, 2021, 143: 10077–10082

    Article  CAS  PubMed  Google Scholar 

  120. Yuan Q, Meng YS, Zhang YQ, Gao C, Liu SS, Wang BW, Gao S. Inorg Chem Front, 2022, 9: 2336–2342

    Article  CAS  Google Scholar 

  121. Wu J, Wang GL, Zhu Z, Zhao C, Li XL, Zhang YQ, Tang J. Chem Commun, 2022, 58: 7638–7641

    Article  CAS  Google Scholar 

  122. Regincós Martí E, Canaj AB, Sharma T, Celmina A, Wilson C, Rajaraman G, Murrie M. Inorg Chem, 2022, 61: 9906–9917

    Article  PubMed  PubMed Central  Google Scholar 

  123. Rubín J, Arauzo A, Bartolomé E, Sedona F, Rancan M, Armelao L, Luzón J, Guidi T, Garlatti E, Wilhelm F, Rogalev A, Amann A, Spagna S, Bartolomé J, Bartolomé F. J Am Chem Soc, 2022, 144: 12520–12535

    Article  PubMed  Google Scholar 

  124. Orlova AP, Hilgar JD, Bernbeck MG, Gembicky M, Rinehart JD. J Am Chem Soc, 2022, 144: 11316–11325

    Article  CAS  PubMed  Google Scholar 

  125. Rinehart JD, Fang M, Evans WJ, Long JR. J Am Chem Soc, 2011, 133: 14236–14239

    Article  CAS  PubMed  Google Scholar 

  126. Rinehart JD, Fang M, Evans WJ, Long JR. Nat Chem, 2011, 3: 538–542

    Article  CAS  PubMed  Google Scholar 

  127. Wang J, Li QW, Wu SG, Chen YC, Wan RC, Huang GZ, Liu Y, Liu JL, Reta D, Giansiracusa MJ, Wang ZX, Chilton NF, Tong ML. Angew Chem Int Ed, 2021, 60: 5299–5306

    Article  CAS  Google Scholar 

  128. Liu F, Krylov DS, Spree L, Avdoshenko SM, Samoylova NA, Rosenkranz M, Kostanyan A, Greber T, Wolter AUB, Büchner B, Popov AA. Nat Commun, 2017, 8: 16098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gould CA, McClain KR, Reta D, Kragskow JGC, Marchiori DA, Lachman E, Choi ES, Analytis JG, Britt RD, Chilton NF, Harvey BG, Long JR. Science, 2022, 375: 198–202

    Article  CAS  PubMed  Google Scholar 

  130. Urdampilleta M, Klyatskaya S, Cleuziou JP, Ruben M, Wernsdorfer W. Nat Mater, 2011, 10: 502–506

    Article  CAS  PubMed  Google Scholar 

  131. Natterer FD, Yang K, Paul W, Willke P, Choi T, Greber T, Heinrich AJ, Lutz CP. Nature, 2017, 543: 226–228

    Article  CAS  PubMed  Google Scholar 

  132. Yang K, Paul W, Phark SH, Willke P, Bae Y, Choi T, Esat T, Ardavan A, Heinrich AJ, Lutz CP. Science, 2019, 366: 509–512

    Article  CAS  PubMed  Google Scholar 

  133. Bogani L, Wernsdorfer W. Nat Mater, 2008, 7: 179–186

    Article  CAS  PubMed  Google Scholar 

  134. Soe WH, Robles R, de Mendoza P, Echavarren AM, Lorente N, Joachim C. Nano Lett, 2021, 21: 8317–8323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971006, 21801037, 22101220), the National Key R&D Program of China (2018YFA0306003, 2017YFA0206301, 2017YFA0204903) and the Fundamental Research Funds for the Central Universities (WUT:2021IVA073).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shang-Da Jiang, Bing-Wu Wang or Song Gao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Meng, YS., Jiang, SD. et al. Approaching the uniaxiality of magnetic anisotropy in single-molecule magnets. Sci. China Chem. 66, 683–702 (2023). https://doi.org/10.1007/s11426-022-1423-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1423-4

Keywords

Navigation