Skip to main content
Log in

Recent progress on the excited-state multiple proton transfer process in organic molecules

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In contrast to the widely reported excited-state single proton-transfer, excited-state multiple proton transfer (ESMPT) containing two or more intra- or inter-molecular proton transfers has greatly expanded the research scope of the excited-state proton transfers. In recent decades, ESMPT-active organic molecules have attracted much attention owing to their unique photophysical properties, such as large magnitude Stokes shifts and dual emission. These photophysical properties facilitate the application of the organic molecules in organic solid-state lasers, fluorescent probes and sensors, and molecular switches. Herein, we introduce the fundamentals of the ESMPT and review the recent advances in different types of ESMPTs in organic molecules. Finally, we present our conclusions and the future development prospects of the ESMPT in organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Douhal A, Kim SK, Zewail AH. Nature, 1995, 378: 260–263

    Article  CAS  PubMed  Google Scholar 

  2. Shen JY, Chao WC, Liu C, Pan HA, Yang HC, Chen CL, Lan YK, Lin LJ, Wang JS, Lu JF, Chun-Wei Chou S, Tang KC, Chou PT. Nat Commun, 2013, 4: 2611

    Article  PubMed  Google Scholar 

  3. Cong P, Roberts G, Herek JL, Mohktari A, Zewail AH. J Phys Chem, 1996, 100: 7832–7848

    Article  CAS  Google Scholar 

  4. Ignasiak MT, Houée-Levin C, Kciuk G, Marciniak B, Pedzinski T. ChemPhysChem, 2015, 16: 628–633

    Article  CAS  PubMed  Google Scholar 

  5. Ghosh D, Batuta S, Das S, Begum NA, Mandal D. J Phys Chem B, 2015, 119: 5650–5661

    Article  CAS  PubMed  Google Scholar 

  6. Wu JJ, Gao H, Lai R, Zhuo MP, Feng J, Wang XD, Wu Y, Liao LS, Jiang L. Matter, 2020, 2: 1233–1243

    Article  Google Scholar 

  7. Wang X, Li ZZ, Li SF, Li H, Chen J, Wu Y, Fu H. Adv Opt Mater, 2017, 5: 1700027

    Article  Google Scholar 

  8. Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J. Chem Soc Rev, 2018, 47: 8842–8880

    Article  CAS  PubMed  Google Scholar 

  9. Weller A. Naturwissenschaften, 1955, 42: 175–176

    Article  CAS  Google Scholar 

  10. Catalán J. J Phys Chem B, 2015, 119: 2132–2139

    Article  PubMed  Google Scholar 

  11. Huang Q, Guo Q, Lan J, You J. Dyes Pigments, 2021, 193: 109497

    Article  CAS  Google Scholar 

  12. Taylor CA, El-Bayoumi MA, Kasha M. Proc Natl Acad Sci USA, 1969, 63: 253–260

    Article  CAS  PubMed Central  Google Scholar 

  13. Chachisvilis M, Fiebig T, Douhal A, Zewail AH. J Phys Chem A, 1998, 102: 669–673

    Article  CAS  Google Scholar 

  14. Bulska H. Chem Phys Lett, 1983, 98: 398–402

    Article  CAS  Google Scholar 

  15. Chou PT, Wei CY, Chang CP, Chiu CH. J Am Chem Soc, 1995, 117: 7259–7260

    Article  CAS  Google Scholar 

  16. Peng CY, Shen JY, Chen YT, Wu PJ, Hung WY, Hu WP, Chou PT. J Am Chem Soc, 2015, 137: 14349–14357

    Article  CAS  PubMed  Google Scholar 

  17. Tu TH, Chen YT, Chen YA, Wei YC, Chen YH, Chen CL, Shen JY, Chen YH, Ho SY, Cheng KY, Lee SL, Chen CH, Chou PT. Angew Chem Int Ed, 2018, 57: 5020–5024

    Article  CAS  Google Scholar 

  18. Chang KH, Liu YH, Liu JC, Peng YC, Yang YH, Li ZB, Jheng RH, Chao CM, Liu KM, Chou PT. Chem Eur J, 2019, 25: 14972–14982

    Article  CAS  PubMed  Google Scholar 

  19. Jouvet C, Miyazaki M, Fujii M. Chem Sci, 2021, 12: 3836–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang CH, Liu ZY, Huang CH, Chen CT, Meng FY, Liao YC, Liu YH, Chang CC, Li EY, Chou PT. J Am Chem Soc, 2021, 143: 12715–12724

    Article  CAS  PubMed  Google Scholar 

  21. Chai S, Zhao GJ, Song P, Yang SQ, Liu JY, Han KL. Phys Chem Chem Phys, 2009, 11: 4385–4390

    Article  CAS  PubMed  Google Scholar 

  22. Kumpulainen T, Lang B, Rosspeintner A, Vauthey E. Chem Rev, 2017, 117: 10826–10939

    Article  CAS  PubMed  Google Scholar 

  23. Padalkar VS, Seki S. Chem Soc Rev, 2016, 45: 169–202

    Article  CAS  PubMed  Google Scholar 

  24. Agmon N. J Phys Chem A, 2005, 109: 13–35

    Article  CAS  PubMed  Google Scholar 

  25. Yan CC, Wang XD, Liao LS. ACS Photonics, 2020, 7: 1355–1366

    Article  CAS  Google Scholar 

  26. Massue J, Jacquemin D, Ulrich G. Chem Lett, 2018, 47: 1083–1089

    Article  CAS  Google Scholar 

  27. Demchenko AP, Tomin VI, Chou PT. Chem Rev, 2017, 117: 13353–13381

    Article  CAS  PubMed  Google Scholar 

  28. Takasugi M, Guendouz A, Chassignol M, Decout JL, Lhomme J, Thuong NT, Hélène C. Proc Natl Acad Sci USA, 1991, 88: 5602–5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guharay J, Sengupta PK. Biochem Biophysl Res Commun, 1996, 219: 388–392

    Article  CAS  Google Scholar 

  30. Li P, Bu Y. J Phys Chem A, 2004, 108: 10288–10295

    Article  CAS  Google Scholar 

  31. Yu X, Yamazaki S, Taketsugu T. J Phys Chem A, 2012, 116: 10566–10573

    Article  CAS  PubMed  Google Scholar 

  32. Pradhan R, Harshan AK, Krishnavilasam Chandrika GS, Srinivasan A, Lourderaj U. J Phys Chem A, 2016, 120: 9894–9906

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, Chen X, Peng LY, Cui G, Xia SH. J Phys Chem A, 2022, 126: 4002–4012

    Article  CAS  PubMed  Google Scholar 

  34. Shen S, Liu X, Sun J, Wang M, Jiang Z, Xia G, Wang H. SpectroChim Acta Part A-Mol Biomol Spectr, 2019, 217: 93–100

    Article  CAS  Google Scholar 

  35. Vendrell O, Gelabert R, Moreno M, Lluch JM. Chem Phys Lett, 2004, 396: 202–207

    Article  CAS  Google Scholar 

  36. Vendrell O, Gelabert R, Moreno M, Lluch JM. J Am Chem Soc, 2006, 128: 3564–3574

    Article  CAS  PubMed  Google Scholar 

  37. Stoner-Ma D, Jaye AA, Ronayne KL, Nappa J, Meech SR, Tonge PJ. J Am Chem Soc, 2008, 130: 1227–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ingham C. K, El-Bayoumi MA. J Am Chem Soc, 1974, 96: 1674–1682

    Article  CAS  Google Scholar 

  39. Suzuki N, Kubota T, Ando N, Yamaguchi S. Chem Eur J, 2022, 28: e202103584

    CAS  PubMed  Google Scholar 

  40. Kawanabe A, Furutani Y, Jung KH, Kandori H. J Am Chem Soc, 2009, 131: 16439–16444

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, He Y, Yang Y, Liu Y. Chem Phys Lett, 2021, 762: 138137

    Article  CAS  Google Scholar 

  42. Yu XF, Yamazaki S, Taketsugu T. J Chem Theor Comput, 2011, 7: 1006–1015

    Article  CAS  Google Scholar 

  43. Yamazaki S. Chem Phys, 2018, 515: 768–778

    Article  CAS  Google Scholar 

  44. Sakota K, Okabe C, Nishi N, Sekiya H. J Phys Chem A, 2005, 109: 5245–5247

    Article  CAS  PubMed  Google Scholar 

  45. Takeuchi S, Tahara T. J Phys Chem A, 1998, 102: 7740–7753

    Article  CAS  Google Scholar 

  46. Chou PT, Wu GR, Wei CY, Cheng CC, Chang CP, Hung FT. J Phys Chem B, 2000, 104: 7818–7829

    Article  CAS  Google Scholar 

  47. Song P, Ma FC. Int Rev Phys Chem, 2013, 32: 589–609

    Article  CAS  Google Scholar 

  48. Kohtani S, Tagami A, Nakagaki R. Chem Phys Lett, 2000, 316: 88–93

    Article  CAS  Google Scholar 

  49. Wei CY, Yu WS, Chou PT, Hung FT, Chang CP, Lin TC. J Phys Chem B, 1998, 102: 1053–1064

    Article  CAS  Google Scholar 

  50. Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM. J Phys Org Chem, 2000, 13: 253–265

    Article  CAS  Google Scholar 

  51. Wei YC, Zhang Z, Chen YA, Wu CH, Liu ZY, Ho SY, Liu JC, Lin JA, Chou PT. Commun Chem, 2019, 2: 10

    Article  Google Scholar 

  52. Folmer DE, Poth L, Wisniewski ES, Castleman Jr. AW. Chem Phys Lett, 1998, 287: 1–7

    Article  CAS  Google Scholar 

  53. Chang CP, Yen FH, Chou PT, Wei CY. Jnl Chin Chem Soc, 1996, 43: 463–472

    Article  CAS  Google Scholar 

  54. Serdiuk IE, Roshal AD. Dyes Pigments, 2017, 138: 223–244

    Article  CAS  Google Scholar 

  55. Zhao J, Zheng Y. Sci Rep, 2017, 7: 44897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu JJ, Zhuo MP, Lai R, Zou SN, Yan CC, Yuan Y, Yang SY, Wei GQ, Wang XD, Liao LS. Angew Chem Int Ed, 2021, 60: 9114–9119

    Article  CAS  Google Scholar 

  57. Yang WY, Lai RC, Wu JJ, Yu YJ, Yan CC, Sun CF, Wang XD, Liao LS. Adv Funct Mater, 2022, 32: 2204129

    Article  CAS  Google Scholar 

  58. Demchenko AP, Tang KC, Chou PT. Chem Soc Rev, 2013, 42: 1379–1408

    Article  CAS  PubMed  Google Scholar 

  59. Tseng HW, Liu JQ, Chen YA, Chao CM, Liu KM, Chen CL, Lin TC, Hung CH, Chou YL, Lin TC, Wang TL, Chou PT. J Phys Chem Lett, 2015, 6: 1477–1486

    Article  CAS  PubMed  Google Scholar 

  60. Sreedevi KCG, Thomas AP, Aparna KH, Pradhan R, Reddy MLP, Lourderaj U, Srinivasan A. Chem Commun, 2014, 50: 8667–8669

    Article  CAS  Google Scholar 

  61. Kwon JE, Park SY. Adv Mater, 2011, 23: 3615–3642

    Article  CAS  PubMed  Google Scholar 

  62. Singh RB, Mahanta S, Kar S, Guchhait N. Chem Phys, 2007, 331: 373–384

    Article  CAS  Google Scholar 

  63. Tobita S, Yamamoto M, Kurahayashi N, Tsukagoshi R, Nakamura Y, Shizuka H. J Phys Chem A, 1998, 102: 5206–5214

    Article  CAS  Google Scholar 

  64. Neuwahl FVR, Foggi P, Brown RG. Chem Phys Lett, 2000, 319: 157–163

    Article  CAS  Google Scholar 

  65. Stock K, Schriever C, Lochbrunner S, Riedle E. Chem Phys, 2008, 349: 197–203

    Article  CAS  Google Scholar 

  66. Chou PT, Wu GR, Wei CY, Cheng CC, Chang CP, Hung FT. J Phys Chem B, 1999, 103: 10042–10052

    Article  CAS  Google Scholar 

  67. Zhang H, van der Meulen P, Glasbeek M. Chem Phys Lett, 1996, 253: 97–102

    Article  CAS  Google Scholar 

  68. Plasser F, Barbatti M, Aquino AJA, Lischka H. J Phys Chem A, 2009, 113: 8490–8499

    Article  CAS  PubMed  Google Scholar 

  69. Tang KC, Chen CL, Chuang HH, Chen JL, Chen YJ, Lin YC, Shen JY, Hu WP, Chou PT. J Phys Chem Lett, 2011, 2: 3063–3068

    Article  CAS  Google Scholar 

  70. Zhao J, Dong H, Zheng Y. J Phys Chem A, 2018, 122: 1200–1208

    Article  CAS  PubMed  Google Scholar 

  71. Yu XF, Yamazaki S, Taketsugu T. J Comput Chem, 2012, 33: 1701–1708

    Article  CAS  PubMed  Google Scholar 

  72. Li H, Shi Y, Yin H, Wang Y, Cong L, Jin M, Ding D. SpectroChim Acta Part A-Mol Biomol Spectr, 2015, 141: 211–215

    Article  CAS  Google Scholar 

  73. Komoto Y, Sakota K, Sekiya H. Chem Phys Lett, 2005, 406: 15–19

    Article  CAS  Google Scholar 

  74. Takeuchi S, Tahara T. Chem Phys Lett, 1997, 277: 340–346

    Article  CAS  Google Scholar 

  75. Waluk J. Acc Chem Res, 2003, 36: 832–838

    Article  CAS  PubMed  Google Scholar 

  76. Takeuchi S, Tahara T. Proc Natl Acad Sci USA, 2007, 104: 5285–5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang H, Liu S, Zhang C, Fan J, Lin L, Wang C, Song Y. SpectroChim Acta Part A-Mol Biomol Spectr, 2019, 223: 117321

    Article  CAS  Google Scholar 

  78. de Klerk JS, Bader AN, Zapotoczny S, Sterzel M, Pilch M, Danel A, Gooijer C, Ariese F. J Phys Chem A, 2009, 113: 5273–5279

    Article  CAS  PubMed  Google Scholar 

  79. Chou PT, Wu GR, Wei CY, Shiao MY, Liu YI. J Phys Chem A, 2000, 104: 8863–8871

    Article  CAS  Google Scholar 

  80. Yu WS, Cheng CC, Chang CP, Wu GR, Hsu CH, Chou PT. J Phys Chem A, 2002, 106: 8006–8012

    Article  CAS  Google Scholar 

  81. Shekhovtsov NA, Vinogradova KA, Nikolaenkova EB, Krivopalov VP, Bushuev MB. J Struct Chem, 2020, 61: 1521–1529

    Article  CAS  Google Scholar 

  82. Hara A, Komoto Y, Sakota K, Miyoshi R, Inokuchi Y, Ohashi K, Kubo K, Yamamoto E, Mori A, Nishi N, Sekiya H. J Phys Chem A, 2004, 108: 10789–10793

    Article  CAS  Google Scholar 

  83. Hsieh WT, Hsieh CC, Lai CH, Cheng YM, Ho ML, Wang KK, Lee GH, Chou PT. ChemPhysChem, 2008, 9: 293–299

    Article  CAS  PubMed  Google Scholar 

  84. Hu WP, Chen JL, Hsieh CC, Chou PT. Chem Phys Lett, 2010, 485: 226–230

    Article  CAS  Google Scholar 

  85. Chou PT. Jnl Chin Chem Soc, 2001, 48: 651–682

    Article  CAS  Google Scholar 

  86. Chang CP, Wen-Chi H, Meng-Shin K, Chou PT, Clements JH. J Phys Chem, 1994, 98: 8801–8805

    Article  CAS  Google Scholar 

  87. Ishikawa H, Iwata K, Hamaguchi H. J Phys Chem A, 2002, 106: 2305–2312

    Article  CAS  Google Scholar 

  88. Fu C, Qu J, Yu X, Cheng J, Li Q. J Mol Liquids, 2022, 353: 118847

    Article  CAS  Google Scholar 

  89. Chung KY, Chen YH, Chen YT, Hsu YH, Shen JY, Chen CL, Chen YA, Chou PT. J Am Chem Soc, 2017, 139: 6396–6402

    Article  CAS  PubMed  Google Scholar 

  90. Wu JJ, Wang XD, Liao LS. ACS Photonics, 2019, 6: 2590–2599

    Article  CAS  Google Scholar 

  91. Wei GQ, Yu Y, Zhuo MP, Wang XD, Liao LS. J Mater Chem C, 2020, 8: 11916–11921

    Article  CAS  Google Scholar 

  92. Qiao C, Zhang C, Zhou Z, Yao J, Zhao YS. CCS Chem, 2022, 4: 250–258

    Article  Google Scholar 

  93. Park S, Kwon OH, Kim S, Park S, Choi MG, Cha M, Park SY, Jang DJ. J Am Chem Soc, 2005, 127: 10070–10074

    Article  CAS  PubMed  Google Scholar 

  94. Shi YL, Wang XD. Adv Funct Mater, 2020, 31: 2008149

    Article  Google Scholar 

  95. Yu Y, Tao YC, Zou SN, Li ZZ, Yan CC, Zhuo MP, Wang XD, Liao LS. Sci China Chem, 2020, 63: 1477–1482

    Article  CAS  Google Scholar 

  96. Xu FF, Li YJ, Lv Y, Dong H, Lin X, Wang K, Yao J, Zhao YS. CCS Chem, 2020, 2: 369–375

    Article  CAS  Google Scholar 

  97. Mutai T, Tomoda H, Ohkawa T, Yabe Y, Araki K. Angew Chem Int Ed, 2008, 47: 9522–9524

    Article  CAS  Google Scholar 

  98. Zhang W, Sakurai T, Aotani M, Watanabe G, Yoshida H, Padalkar VS, Tsutsui Y, Sakamaki D, Ozaki M, Seki S. Adv Opt Mater, 2019, 7: 1801349

    Article  Google Scholar 

  99. Chou PT, Liao JH, Wei CY, Yang CY, Yu WS, Chou YH. J Am Chem Soc, 2000, 122: 986–987

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52173177, 21971185, 22105139) and China Postdoctoral Science Foundation (2020M681707). This project is also funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC-Nano), and by the “111” Project of the State Administration of Foreign Experts Affairs of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Dong Wang or Liang-Sheng Liao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, WY., Yan, CC., Wang, XD. et al. Recent progress on the excited-state multiple proton transfer process in organic molecules. Sci. China Chem. 65, 1843–1853 (2022). https://doi.org/10.1007/s11426-022-1375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1375-y

Keywords

Navigation