Skip to main content
Log in

Interface terminal group regulated organic phototransistors with tunable persistent and switchable photoconductivity

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With both light detection and intrinsic amplification functions, organic phototransistors have demonstrated promising applications, including photodetection and photomemory. To achieve excellent photoresponse and superior photogain, a common and effective strategy is to modulate the trapping effect with the purpose of reducing recombination or prolonging the lifetime of the photogenerated charge carriers. However, introducing trapping sites delicately is challenging and might sacrifice the response rate together with a typical persistent photoconductivity. Here, we demonstrate a facile strategy for achieving high photo-responsive organic phototransistors with both persistent and switchable photoconductivity features via interface terminal group regulation. By varying the terminate groups of self-assembled monolayer (SAMs) from the strong electron withdrawing group — F, neutral −CH3 to electron donating −NH2 on the dielectric surface, we realize both minority carrier trapping and majority carrier trapping in the organic phototransistor based on the C8-BTBT active layer. The electron withdrawing effect of F significantly enhances the minority carrier trapping process and yields a high photoresponsivity with a long-lasting persistent photoconductivity. In contrast, the electron donating group −NH2 with a distinct majority carrier trapping ability causes switchable photoconductivity so that the photocurrent can rise pronouncedly and fully decay along with light on/off. Attractively, both cases can deliver high performance with photoresponsivities higher than 104 A W−1 together with a photosensitivity in the level of 107 and a detectivity of approximately 1015–1016 Jones. Such a tunable, excellent photoresponse property enables the convenient exploration of organic phototransistors to satisfy different application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baeg KJ, Binda M, Natali D, Caironi M, Noh YY. Adv Mater, 2013, 25: 4267–4295

    Article  CAS  Google Scholar 

  2. Ji D, Li T, Liu J, Amirjalayer S, Zhong M, Zhang ZY, Huang X, Wei Z, Dong H, Hu W, Fuchs H. Nat Commun, 2019, 10: 12

    Article  CAS  Google Scholar 

  3. Qian C, Sun J, Kong L, Fu Y, Chen Y, Wang J, Wang S, Xie H, Huang H, Yang J, Gao Y. ACS Photonics, 2017, 4: 2573–2579

    Article  CAS  Google Scholar 

  4. Wang C, Zhang X, Hu W. Chem Soc Rev, 2020, 49: 653–670

    Article  CAS  Google Scholar 

  5. Hu Y, Yu L, Huang Y, Wang Z, Wang S, Chen X, Ji D, Dong H, Li J, Sun Y, Li L, Hu W. Sci China Chem, 2021, 65: 145–152

    Article  Google Scholar 

  6. Dong H, Zhu H, Meng Q, Gong X, Hu W. Chem Soc Rev, 2012, 41: 1754–1808

    Article  CAS  Google Scholar 

  7. Zhang Q, Jin T, Ye X, Geng D, Chen W, Hu W. Adv Funct Mater, 2021, 31: 2106151

    Article  CAS  Google Scholar 

  8. Gao X, Zhao Z. Sci China Chem, 2015, 58: 947–968

    Article  CAS  Google Scholar 

  9. Yu X, Zheng L, Li J, Wang L, Han J, Chen H, Zhang X, Hu W. Sci China Chem, 2019, 62: 251–255

    Article  CAS  Google Scholar 

  10. Dai S, Wu X, Liu D, Chu Y, Wang K, Yang B, Huang J. ACS Appl Mater Interfaces, 2018, 10: 21472–21480

    Article  CAS  Google Scholar 

  11. Liu X, Dong G, Duan L, Wang L, Qiu Y. J Mater Chem, 2012, 22: 11836–11842

    Article  CAS  Google Scholar 

  12. Kobayashi S, Nishikawa T, Takenobu T, Mori S, Shimoda T, Mitani T, Shimotani H, Yoshimoto N, Ogawa S, Iwasa Y. Nat Mater, 2004, 3: 317–322

    Article  CAS  Google Scholar 

  13. Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R. Nat Commun, 2015, 6: 8589

    Article  CAS  Google Scholar 

  14. Qin S, Chen X, Du Q, Nie Z, Wang X, Lu H, Wang X, Liu K, Xu Y, Shi Y, Zhang R, Wang F. ACS Appl Mater Interfaces, 2018, 10: 38326–38333

    Article  CAS  Google Scholar 

  15. Wang J, Han J, Chen X, Wang X. InfoMat, 2019, 1: 33–53

    Article  CAS  Google Scholar 

  16. Chen X, Shehzad K, Gao L, Long M, Guo H, Qin S, Wang X, Wang F, Shi Y, Hu W, Xu Y, Wang X. Adv Mater, 2019, 32: e1902039

    Article  Google Scholar 

  17. Zhao X, Tang Q, Tian H, Tong Y, Liu Y. Org Electron, 2015, 16: 171–176

    Article  CAS  Google Scholar 

  18. Ljubic D, Smithson CS, Wu Y, Zhu S. Adv Electron Mater, 2015, 1: 1500119

    Article  Google Scholar 

  19. Liu J, Jiang L, Shi J, Li C, Shi Y, Tan J, Li H, Jiang H, Hu Y, Liu X, Yu J, Wei Z, Jiang L, Hu W. Adv Mater, 2020, 32: 1906122

    Article  CAS  Google Scholar 

  20. Liu X, Zhao H, Dong G, Duan L, Li D, Wang L, Qiu Y. ACS Appl Mater Interfaces, 2014, 6: 8337–8344

    Article  CAS  Google Scholar 

  21. Huang J, Du J, Cevher Z, Ren Y, Wu X, Chu Y. Adv Funct Mater, 2017, 27: 1604163

    Article  Google Scholar 

  22. Jia R, Wu X, Deng W, Zhang X, Huang L, Niu K, Chi L, Jie J. Adv Funct Mater, 2019, 29: 1905657

    Article  CAS  Google Scholar 

  23. Dao TT, Sakai H, Ohkubo K, Fukuzumi S, Murata H. Org Electron, 2020, 77: 105505

    Article  CAS  Google Scholar 

  24. Shou M, Zhang Q, Li H, Xiong S, Hu B, Zhou J, Zheng N, Xie Z, Ying L, Liu L. Adv Opt Mater, 2021, 9: 2002031

    Article  CAS  Google Scholar 

  25. Zan HW, Kao SC, Ouyang SR. IEEE Electron Device Lett, 2010, 31: 135–137

    Article  CAS  Google Scholar 

  26. Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Sci China Chem, 2022, 65: 1010–1075

    Article  CAS  Google Scholar 

  27. Kong J, Dai H. J Phys Chem B, 2001, 105: 2890–2893

    Article  CAS  Google Scholar 

  28. Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM. Appl Phys Lett, 1995, 67: 121–123

    Article  CAS  Google Scholar 

  29. Mougkogiannis P, Turner M, Persaud K. Sensors, 2020, 21: 13

    Article  Google Scholar 

  30. Li F, Ma C, Wang H, Hu W, Yu W, Sheikh AD, Wu T. Nat Commun, 2015, 6: 8238

    Article  Google Scholar 

  31. Jung JH, Yoon MJ, Lim JW, Lee YH, Lee KE, Kim DH, Oh JH. Adv Funct Mater, 2017, 27: 1604528

    Article  Google Scholar 

  32. Tao J, Liu D, Qin Z, Shao B, Jing J, Li H, Dong H, Xu B, Tian W. Adv Mater, 2020, 32: 1907791

    Article  CAS  Google Scholar 

  33. Song R, Zhou X, Wang Z, Zhu L, Lu J, Xue D, Wang Z, Huang L, Chi L. Org Electron, 2021, 91: 106083

    Article  CAS  Google Scholar 

  34. Xu H, Li J, Leung BHK, Poon CCY, Ong BS, Zhang Y, Zhao N. Nanoscale, 2013, 5: 11850–11855

    Article  CAS  Google Scholar 

  35. Huang F, Wang X, Xu K, Liang Y, Peng Y, Liu G. J Mater Chem C, 2018, 6: 8804–8811

    Article  CAS  Google Scholar 

  36. Liao F, Zhou Z, Kim BJ, Chen J, Wang J, Wan T, Zhou Y, Hoang AT, Wang C, Kang J, Ahn JH, Chai Y. Nat Electron, 2022, 5: 84–91

    Article  Google Scholar 

  37. Du Q, Qin S, Wang Z, Gan Y, Zhang Y, Fan L, Liu Y, Li S, Dong R, Liu C, Wang W, Wang F. ACS Appl Mater Interfaces, 2021, 13: 57735–57742

    Article  CAS  Google Scholar 

  38. Zhang H, Hu Y, Chen X, Yu L, Huang Y, Wang Z, Wang S, Lou Y, Ma X, Sun Y, Li J, Ji D, Li L, Hu W. Adv Funct Mater, 2022, 32: 2111705

    Article  CAS  Google Scholar 

  39. Noh YY, Kim DY, Yoshida Y, Yase K, Jung BJ, Lim E, Shim HK. Appl Phys Lett, 2005, 86: 043501

    Article  Google Scholar 

  40. Campbell IH, Kress JD, Martin RL, Smith DL, Barashkov NN, Ferraris JP. Appl Phys Lett, 1997, 71: 3528–3530

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFE0200700), the National Natural Science Foundation of China (52173176, 51773143, 51821002), the Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zi Wang, Lizhen Huang or Lifeng Chi.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, D., Zhang, Y., Gong, W. et al. Interface terminal group regulated organic phototransistors with tunable persistent and switchable photoconductivity. Sci. China Chem. 65, 2567–2575 (2022). https://doi.org/10.1007/s11426-022-1368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1368-7

Keywords

Navigation