Skip to main content
Log in

Elucidation of the sodium kinetics in layered P-type oxide cathodes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Sodium-ion intercalation oxides generally possess high compositional diversity according to their different stacking sequences. The sodium diffusion pathway in layered P-type materials used in sodium-ion batteries is open, which can increase their rate capability by directly transmitting Na+ between adjacent triangular prismatic channels, rather than passing through an intermediate tetrahedral site in O-type structure. However, how the structure chemistry of the P-type oxides determines their electrochemical properties has not been fully understood yet. Herein, by comparing the crystalline structures, electrochemical behaviors, ion/electron transport dynamics of a couple of P-type intercalation cathodes, P2-Na2/3Ni1/3Mn2/3O2 and P3-Na2/3Ni1/3Mn2/3O2 with the same compositions, we demonstrate experimentally and computationally that the P2 phase delivers better cycling stability and rate capability than the P3 counterpart due to the predominant contribution of the faster intrinsic Na diffusion kinetics in the P2 bulk. We also point out that it is the electronic conductivity that captures the key electrochemistry of layered P3-type materials and makes them possible to enhance the sodium storage performance. The results reveal that the correlation between stacking structure and functional properties in two typical layered P-type cathodes, providing new guidelines for preparing and designing alkali-metal layered oxide materials with improved battery performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu Z, Wang J. Adv Energy Mater, 2022, 12: 2201692

    Article  CAS  Google Scholar 

  2. Xu J, Xu Y, Lai C, Xia T, Zhang B, Zhou X. Sci China Chem, 2021, 64: 1267–1282

    Article  CAS  Google Scholar 

  3. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem Rev, 2014, 114: 11636–11682

    Article  CAS  PubMed  Google Scholar 

  4. Liu Q, Hu Z, Li W, Zou C, Jin H, Wang S, Chou S, Dou SX. Energy Environ Sci, 2021, 14: 158–179

    Article  CAS  Google Scholar 

  5. Yao HR, Zheng L, Xin S, Guo YG. Sci China Chem, 2022, 65: 1076–1087

    Article  CAS  Google Scholar 

  6. Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Chem Rec, 2018, 18: 459–479

    Article  CAS  PubMed  Google Scholar 

  7. Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou SL, Dou SX. Small, 2019, 15: 1805381

    Article  Google Scholar 

  8. Xie F, Xu Z, Guo Z, Lu Y, Chen L, Titirici MM, Hu YS. Sci China Chem, 2021, 64: 1679–1692

    Article  CAS  Google Scholar 

  9. Xiao B, Liu X, Song M, Yang X, Omenya F, Feng S, Sprenkle V, Amine K, Xu G, Li X, Reed D. Nano Energy, 2021, 89: 106371

    Article  CAS  Google Scholar 

  10. Qi R, Chu M, Zhao W, Chen Z, Liao L, Zheng S, Chen X, Xie L, Liu T, Ren Y, Jin L, Amine K, Pan F, Xiao Y. Nano Energy, 2021, 88: 106206

    Article  CAS  Google Scholar 

  11. Wu Q, Liu Y, Zhu Z, Li H, Li F. Sci Sin-Chim, 2021, 51: 862–875

    Article  Google Scholar 

  12. Li C, Hou J, Zhang J, Li X, Jiang S, Zhang G, Yao Z, Liu T, Shen S, Liu Z, Xia X, Xiong J, Yang Y. Sci China Chem, 2022, 65: 1420–1432

    Article  CAS  Google Scholar 

  13. Yuan XG, Guo YJ, Gan L, Yang XA, He WH, Zhang XS, Yin YX, Xin S, Yao HR, Huang Z, Guo YG. Adv Funct Mater, 2022, 32: 2111466

    Article  CAS  Google Scholar 

  14. Ding F, Zhao C, Xiao D, Rong X, Wang H, Li Y, Yang Y, Lu Y, Hu YS. J Am Chem Soc, 2022, 144: 8286–8295

    Article  CAS  PubMed  Google Scholar 

  15. Zheng YM, Huang XB, Meng XM, Xu SD, Chen L, Liu SB, Zhang D. ACS Appl Mater Interfaces, 2021, 13: 45528–45537

    Article  CAS  PubMed  Google Scholar 

  16. Chen T, Ouyang B, Fan X, Zhou W, Liu W, Liu K. Carbon Energy, 2022, 4: 170–199

    Article  CAS  Google Scholar 

  17. Ren H, Li Y, Ni Q, Bai Y, Zhao H, Wu C. Adv Mater, 2022, 34: 2106171

    Article  CAS  Google Scholar 

  18. Delmas C, Fouassier C, Hagenmuller P. Physica B+C, 1980, 99: 81–85

    Article  CAS  Google Scholar 

  19. Hwang JY, Myung ST, Sun YK. Chem Soc Rev, 2017, 46: 3529–3614

    Article  CAS  PubMed  Google Scholar 

  20. Sun Y, Guo S, Zhou H. Energy Environ Sci, 2019, 12: 825–840

    Article  CAS  Google Scholar 

  21. Xu H, Yan Q, Yao W, Lee CS, Tang Y. Small Struct, 2022, 3: 2100217

    Article  CAS  Google Scholar 

  22. Wang PF, You Y, Yin YX, Guo YG. Adv Energy Mater, 2018, 8: 1701912

    Article  Google Scholar 

  23. Zuo W, Liu X, Qiu J, Zhang D, Xiao Z, Xie J, Ren F, Wang J, Li Y, Ortiz GF, Wen W, Wu S, Wang MS, Fu R, Yang Y. Nat Commun, 2021, 12: 4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Q, Butt FK, Yang M, Guo Z, Yao X, Zapata MJM, Zhu Y, Ma X, Cao C. Energy Storage Mater, 2021, 41: 581–587

    Article  Google Scholar 

  25. Wang QC, Shadike Z, Li XL, Bao J, Qiu QQ, Hu E, Bak SM, Xiao X, Ma L, Wu XJ, Yang XQ, Zhou YN. Adv Energy Mater, 2021, 11: 2003455

    Article  CAS  Google Scholar 

  26. Chagas LG, Buchholz D, Vaalma C, Wu L, Passerini S. J Mater Chem A, 2014, 2: 20263–20270

    Article  CAS  Google Scholar 

  27. Zhou YN, Wang PF, Zhang XD, Huang LB, Wang WP, Yin YX, Xu S, Guo YG. ACS Appl Mater Interfaces, 2019, 11: 24184–24191

    Article  CAS  PubMed  Google Scholar 

  28. Guo S, Sun Y, Yi J, Zhu K, Liu P, Zhu Y, Zhu G, Chen M, Ishida M, Zhou H. NPG Asia Mater, 2016, 8: e266

    Article  CAS  Google Scholar 

  29. Zhou YN, Wang PF, Niu YB, Li Q, Yu X, Yin YX, Xu S, Guo YG. Nano Energy, 2019, 55: 143–150

    Article  CAS  Google Scholar 

  30. Lu Z, Donaberger RA, Dahn JR. Chem Mater, 2000, 12: 3583–3590

    Article  CAS  Google Scholar 

  31. Paulsen JM, Donaberger RA, Dahn JR. Chem Mater, 2000, 12: 2257–2267

    Article  CAS  Google Scholar 

  32. Lee DH, Xu J, Meng YS. Phys Chem Chem Phys, 2013, 15: 3304

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Wang J, Li J, Schuck G, Winter M, Schumacher G, Li J. Nano Energy, 2020, 70: 104535

    Article  CAS  Google Scholar 

  34. Lu Z, Dahn JR. Chem Mater, 2001, 13: 1252–1257

    Article  CAS  Google Scholar 

  35. Yang HX, Nie CJ, Shi YG, Yu HC, Ding S, Liu YL, Wu D, Wang NL, Li JQ. Solid State Commun, 2005, 134: 403–408

    Article  CAS  Google Scholar 

  36. Liu K, Tan S, Moon J, Jafta CJ, Li C, Kobayashi T, Lyu H, Bridges CA, Men S, Guo W, Sun Y, Zhang J, Paranthaman MP, Sun XG, Dai S. Adv Energy Mater, 2020, 10: 2000135

    Article  CAS  Google Scholar 

  37. Kang W, Ma P, Liu Z, Wang Y, Wang X, Chen H, He T, Luo W, Sun D. ACS Appl Mater Interfaces, 2021, 13: 15333–15343

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z, Wang R, Zeng J, Shi K, Zhu C, Yan X. Adv Funct Mater, 2021, 31: 2106047

    Article  CAS  Google Scholar 

  39. Jo M, Hong YS, Choo J, Cho J. J Electrochem Soc, 2009, 156: A430

    Article  CAS  Google Scholar 

  40. Wang PF, Yao HR, Liu XY, Yin YX, Zhang JN, Wen Y, Yu X, Gu L, Guo YG. Sci Adv, 2018, 4: eaar6018

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheng Z, Zhao B, Guo YJ, Yu L, Yuan B, Hua W, Yin YX, Xu S, Xiao B, Han X, Wang PF, Guo YG. Adv Energy Mater, 2022, 12: 2103461

    Article  CAS  Google Scholar 

  42. Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S. J Mater Chem A, 2019, 7: 9215–9221

    Article  CAS  Google Scholar 

  43. Lu Z, Dahn JR. J Electrochem Soc, 2001, 148: A1225

    Article  CAS  Google Scholar 

  44. Wang K, Wan H, Yan P, Chen X, Fu J, Liu Z, Deng H, Gao F, Sui M. Adv Mater, 2019, 31: 1904816

    Article  CAS  Google Scholar 

  45. Cheng C, Li S, Liu T, Xia Y, Chang LY, Yan Y, Ding M, Hu Y, Wu J, Guo J, Zhang L. ACS Appl Mater Interfaces, 2019, 11: 41304–41312

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Wu M, Ma J, Wei G, Ling Y, Zhang R, Huang Y. ACS Cent Sci, 2020, 6: 232–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. You Y, Yao HR, Xin S, Yin YX, Zuo TT, Yang CP, Guo YG, Cui Y, Wan LJ, Goodenough JB. Adv Mater, 2016, 28: 7243–7248

    Article  CAS  PubMed  Google Scholar 

  48. Shen X, Zhou Q, Han M, Qi X, Li B, Zhang Q, Zhao J, Yang C, Liu H, Hu YS. Nat Commun, 2021, 12: 2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1607128, 52102302 and 21521005), Natural Science Foundation of Beijing (2222020), the Young Talent Support Plan and Siyuan Scholar of Xi’an Jiaotong University (DQ6J011 and DQ1J009), and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE23313). The authors acknowledge the help from the Instrument Analysis Center and the High Performance Computing (HPC) Center at Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Xiao, Peng-Fei Wang or Sailong Xu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Dong, H., Chang, YX. et al. Elucidation of the sodium kinetics in layered P-type oxide cathodes. Sci. China Chem. 65, 2005–2014 (2022). https://doi.org/10.1007/s11426-022-1364-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1364-1

Keywords

Navigation