Skip to main content
Log in

Kinetically rate-determining step modulation by metal—support interactions for CO oxidation on Pt/CeO2

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Rational design and performance promotion are eternal topics and ultimate goals in catalyst preparation. In contrast, trial—and—error is still the common method people take. Therefore, it is important to develop methods to intrinsically enhance the performance of catalysts. The most effective solutions are the one from a kinetic perspective based on clear knowledge of the reaction mechanism. This paper describes rate-determining step cognition and modulation to promote CO oxidation on highly dispersed Pt on CeO2. The different degrees of metal—support interactions due to variation of hydroxyl density of support could alter the structure of active species and the ability of oxygen activation apparently, further shift the rate-determining step from oxygen activation to oxygen reverse spillover kinetically. The transformation of rate-determining step could enhance the intrinsic activity significantly, and decrease the T50 approximately 140 °C. The findings of this research exemplify the universal and effective method of performance elevation by rate-determining step modulation, which is promising for application in different systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhai Y, Pierre D, Si R, Deng W, Ferrin P, Nilekar AU, Peng G, Herron JA, Bell DC, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2010, 329: 1633–1636

    Article  CAS  PubMed  Google Scholar 

  2. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat Chem, 2011, 3: 634–641

    Article  CAS  PubMed  Google Scholar 

  3. Baskaran S, Xu CQ, Wang YG, Garzón IL, Li J. Sci China Mater, 2020, 63: 993–1002

    Article  CAS  Google Scholar 

  4. Yang M, Li S, Wang Y, Herron JA, Xu Y, Allard LF, Lee S, Huang J, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2014, 346: 1498–1501

    Article  CAS  PubMed  Google Scholar 

  5. Lang R, Li T, Matsumura D, Miao S, Ren Y, Cui YT, Tan Y, Qiao B, Li L, Wang A, Wang X, Zhang T. Angew Chem Int Ed, 2016, 55: 16054–16058

    Article  CAS  Google Scholar 

  6. Huang P, Liu W, He Z, Xiao C, Yao T, Zou Y, Wang C, Qi Z, Tong W, Pan B, Wei S, Xie Y. Sci China Chem, 2018, 61: 1187–1196

    Article  CAS  Google Scholar 

  7. Wang C, Garbarino G, Allard LF, Wilson F, Busca G, Flytzani-Stephanopoulos M. ACS Catal, 2016, 6: 210–218

    Article  CAS  Google Scholar 

  8. Kwon Y, Kim TY, Kwon G, Yi J, Lee H. J Am Chem Soc, 2017, 139: 17694–17699

    Article  CAS  PubMed  Google Scholar 

  9. Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier DM, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N. Science, 2016, 352: 797–800

    Article  CAS  PubMed  Google Scholar 

  10. Liu K, Tang Y, Yu Z, Ge B, Ren G, Ren Y, Su Y, Zhang J, Sun X, Chen Z, Liu X, Qiao B, Li WZ, Wang A, Li J. Sci China Mater, 2020, 63: 949–958

    Article  CAS  Google Scholar 

  11. Jones J, Xiong H, DeLaRiva AT, Peterson EJ, Pham H, Challa SR, Qi G, Oh S, Wiebenga MH, Pereira Hernández XI, Wang Y, Datye AK. Science, 2016, 353: 150–154

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z, Zhu Y, Asakura H, Zhang B, Zhang J, Zhou M, Han Y, Tanaka T, Wang A, Zhang T, Yan N. Nat Commun, 2017, 8: 16100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu L, Meira DM, Arenal R, Concepcion P, Puga AV, Corma A. ACS Catal, 2019, 9: 10626–10639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsubu JC, Yang VN, Christopher P. J Am Chem Soc, 2015, 137: 3076–3084

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Li Y, Zhang T. Sci China Mater, 2020, 63: 889–891

    Article  Google Scholar 

  16. Jeong H, Kwon O, Kim BS, Bae J, Shin S, Kim HE, Kim J, Lee H. Nat Catal, 2020, 3: 368–375

    Article  CAS  Google Scholar 

  17. Zhang S, Wu Y, Zhang YX, Niu Z. Sci China Chem, 2021, 64: 1908–1922

    Article  CAS  Google Scholar 

  18. Kliewer CJ, Aliaga C, Bieri M, Huang W, Tsung CK, Wood JB, Komvopoulos K, Somorjai GA. J Am Chem Soc, 2010, 132: 13088–13095

    Article  CAS  PubMed  Google Scholar 

  19. Jeong H, Lee G, Kim BS, Bae J, Han JW, Lee H. J Am Chem Soc, 2018, 140: 9558–9565

    Article  CAS  PubMed  Google Scholar 

  20. An K, Alayoglu S, Musselwhite N, Na K, Somorjai GA. J Am Chem Soc, 2014, 136: 6830–6833

    Article  CAS  PubMed  Google Scholar 

  21. Wang GH, Hilgert J, Richter FH, Wang F, Bongard HJ, Spliethoff B, Weidenthaler C, Schüth F. Nat Mater, 2014, 13: 293–300

    Article  PubMed  Google Scholar 

  22. Ding K, Gulec A, Johnson AM, Schweitzer NM, Stucky GD, Marks LD, Stair PC. Science, 2015, 350: 189–192

    Article  CAS  PubMed  Google Scholar 

  23. Ning J, Zhou Y, Shen W. Sci China Chem, 2021, 64: 1103–1110

    Article  CAS  Google Scholar 

  24. DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham GW, Pan X, Christopher P. J Am Chem Soc, 2017, 139: 14150–14165

    Article  CAS  PubMed  Google Scholar 

  25. Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y. Science, 2017, 358: 1419–1423

    Article  CAS  PubMed  Google Scholar 

  26. Maurer F, Jelic J, Wang J, Gänzler A, Dolcet P, Wöll C, Wang Y, Studt F, Casapu M, Grunwaldt JD. Nat Catal, 2020, 3: 824–833

    Article  CAS  Google Scholar 

  27. Pereira-Hernández XI, DeLaRiva A, Muravev V, Kunwar D, Xiong H, Sudduth B, Engelhard M, Kovarik L, Hensen EJM, Wang Y, Datye AK. Nat Commun, 2019, 10: 1358

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang H, Liu JX, Allard LF, Lee S, Liu J, Li H, Wang J, Wang J, Oh SH, Li W, Flytzani-Stephanopoulos M, Shen M, Goldsmith BR, Yang M. Nat Commun, 2019, 10: 3808

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kunwar D, Zhou S, DeLaRiva A, Peterson EJ, Xiong H, Pereira-Hernández XI, Purdy SC, ter Veen R, Brongersma HH, Miller JT, Hashiguchi H, Kovarik L, Lin S, Guo H, Wang Y, Datye AK. ACS Catal, 2019, 9: 3978–3990

    Article  CAS  Google Scholar 

  30. Zhang J, Qin X, Chu X, Chen M, Chen X, Chen J, He H, Zhang C. Environ Sci Technol, 2021, 55: 16687–16698

    Article  CAS  PubMed  Google Scholar 

  31. Jiang D, Yao Y, Li T, Wan G, Pereira-Hernández XI, Lu Y, Tian J, Khivantsev K, Engelhard MH, Sun C, García-Vargas CE, Hoffman AS, Bare SR, Datye AK, Hu L, Wang Y. Angew Chem Int Ed, 2021, 60: 26054–26062

    Article  CAS  Google Scholar 

  32. Zhang C, Li S, Li M, Wang S, Ma X, Gong J. AIChE J, 2012, 58: 516–525

    Article  CAS  Google Scholar 

  33. Kuo CT, Lu Y, Kovarik L, Engelhard M, Karim AM. ACS Catal, 2019, 9: 11030–11041

    Article  CAS  Google Scholar 

  34. Kim HJ, Jang MG, Shin D, Han JW. ChemCatChem, 2020, 12: 11–26

    Article  CAS  Google Scholar 

  35. Ma Y, Gao W, Zhang Z, Zhang S, Tian Z, Liu Y, Ho JC, Qu Y. Surf Sci Rep, 2018, 73: 1–36

    Article  Google Scholar 

  36. Wu Z, Li M, Howe J, Meyer Iii HM, Overbury SH. Langmuir, 2010, 26: 16595–16606

    Article  CAS  PubMed  Google Scholar 

  37. Abi-aad E, Bechara R, Grimblot J, Aboukais A. Chem Mater, 1993, 5: 793–797

    Article  CAS  Google Scholar 

  38. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF. Surf Sci, 2003, 526: 1–18

    Article  CAS  Google Scholar 

  39. Regalbuto J. Catalyst Preparation: Science and Engineering. London: CRC Press/Taylor & Francis, 2006. 488

    Google Scholar 

  40. Wong A, Liu Q, Griffin S, Nicholls A, Regalbuto JR. Science, 2017, 358: 1427–1430

    Article  CAS  PubMed  Google Scholar 

  41. Brunelle JP. Pure Appl Chem, 1978, 50: 1211–1229

    Article  CAS  Google Scholar 

  42. Conţescu C, Vass MI. Appl Catal, 1987, 33: 259–271

    Article  Google Scholar 

  43. Aleksandrov HA, Neyman KM, Hadjiivanov KI, Vayssilov GN. Phys Chem Chem Phys, 2016, 18: 22108–22121

    Article  CAS  PubMed  Google Scholar 

  44. Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB. Science, 2013, 341: 771–773

    Article  CAS  PubMed  Google Scholar 

  45. Liu HH, Wang Y, Jia AP, Wang SY, Luo MF, Lu JQ. Appl Surf Sci, 2014, 314: 725–734

    Article  CAS  Google Scholar 

  46. Lu Y, Thompson C, Kunwar D, Datye AK, Karim AM. ChemCatChem, 2020, 12: 1726–1733

    Article  CAS  Google Scholar 

  47. Huang W. Surface oxygen vacancy-controlled reactivity of hydroxyl groups on transitional metal oxide surfaces. In: Wandelt K, Eds. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Amsterdam: Elsevier, 2018. 666–672

    Chapter  Google Scholar 

  48. Zhan W, Wang J, Wang H, Zhang J, Liu X, Zhang P, Chi M, Guo Y, Guo Y, Lu G, Sun S, Dai S, Zhu H. J Am Chem Soc, 2017, 139: 8846–8854

    Article  CAS  PubMed  Google Scholar 

  49. Chorkendorff I, Nienantsverdriet JW. Concepts of Modern Catalysis and Kinetics. Weinheim: Wiley-VCH, 2005

    Google Scholar 

  50. Vayssilov GN, Lykhach Y, Migani A, Staudt T, Petrova GP, Tsud N, Skála T, Bruix A, Illas F, Prince KC, Matohín Vı, Neyman KM, Libuda J. Nat Mater, 2011, 10: 310–315

    Article  CAS  PubMed  Google Scholar 

  51. Wei DY, Yue MF, Qin SN, Zhang S, Wu YF, Xu GY, Zhang H, Tian ZQ, Li JF. J Am Chem Soc, 2021, 143: 15635–15643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Key R&D Program of China (2021YFA1501302), the National Natural Science Foundation of China (22121004, U1862207), the Haihe Laboratory of Sustainable Chemical Transformations and the Program of Introducing Talents of Discipline to Universities (BP0618007) for financial support. This work is supported by the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Gong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Pei, C., Zhao, ZJ. et al. Kinetically rate-determining step modulation by metal—support interactions for CO oxidation on Pt/CeO2. Sci. China Chem. 65, 2038–2044 (2022). https://doi.org/10.1007/s11426-022-1361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1361-9

Keywords

Navigation