Skip to main content
Log in

A-site cation engineering enables oriented Ruddlesden-Popper perovskites towards efficient solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Quasi two-dimensional (Q-2D) perovskites with favorable environment stability and satisfied device performance are attracting great attention and becoming star materials. The unique characteristics of more wide range of Goldschmidt tolerance factor endow Q-2D perovskites with exceptional composition tunability and great potential. Herein, Guanidinium (Gua) was firstly introduced into the octahedral cation site of BA2MA3Pb4I13 perovskite to partially replace methylammonium (MA). With the incorporation of Gua, the XRD intensity ratio of (202)/(111) increased nearly 100% for control and 0.10Gua-mixed Q-2D perovskite, from1.49 to 2.84, indicating that the layered perovskite crystallization orientation is significantly regulated. Coupling with GIWAXS results, a preferential orientation Q-2D perovskite film was obtained. Meanwhile, the Gua-based Q-2D perovskite exhibits significantly reduced nonradiative recombination, which greatly promotes the efficient transport of carriers leading to a high efficiency of 15.41% in the BA2(MA0.9GA0.1)3Pb4I13-based solar cell. Moreover, the solar cells display superior environmental stability at an average humidity of 35%±5% in the air for 1200 h. This work points the way to the regulation of crystal orientation for enhancing the performance of Q-2D perovskite by the A-site cation engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S, Chen H, Zhang J, Xu G, Chen W, Xue R, Zhang M, Li Y, Li Y. Adv Mater, 2019, 31: 1903691

    Article  CAS  Google Scholar 

  2. Luo W, Wu C, Wang D, Zhang Y, Zhang Z, Qi X, Zhu N, Guo X, Qu B, Xiao L, Chen Z. ACS Appl Mater Interfaces, 2019, 11: 9149–9155

    Article  CAS  Google Scholar 

  3. Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu SF. Nat Commun, 2018, 9: 3239

    Article  Google Scholar 

  4. Min H, Lee DY, Kim J, Kim G, Lee KS, Kim J, Paik MJ, Kim YK, Kim KS, Kim MG, Shin TJ, Il Seok S. Nature, 2021, 598: 444–450

    Article  CAS  Google Scholar 

  5. Shao M, Bie T, Yang L, Gao Y, Jin X, He F, Zheng N, Yu Y, Zhang X. Adv Mater, 2022, 34: 2107211

    Article  CAS  Google Scholar 

  6. Chen Y, Sun Y, Peng J, Tang J, Zheng K, Liang Z. Adv Mater, 2018, 30: 1703487

    Article  Google Scholar 

  7. Liu R, Li H, Zhang F, Hu T, Yu Y, Liu C, Yu H. Sol Energy, 2020, 209: 446–453

    Article  CAS  Google Scholar 

  8. Liu R, Yu Y, Hu T, Zhang F, Liu C, Hou H, Zhang M, Chen X, Yu H. J Power Sources, 2021, 512: 230452

    Article  CAS  Google Scholar 

  9. Zhou N, Shen Y, Li L, Tan S, Liu N, Zheng G, Chen Q, Zhou H. J Am Chem Soc, 2018, 140: 459–465

    Article  CAS  Google Scholar 

  10. Fu Y, Hautzinger MP, Luo Z, Wang F, Pan D, Aristov MM, Guzei IA, Pan A, Zhu X, Jin S. ACS Cent Sci, 2019, 5: 1377–1386

    Article  CAS  Google Scholar 

  11. Green MA, Ho-Baillie A, Snaith HJ. Nat Photon, 2014, 8: 506–514

    Article  CAS  Google Scholar 

  12. Fu Y, Jiang X, Li X, Traore B, Spanopoulos I, Katan C, Even J, Kanatzidis MG, Harel E. J Am Chem Soc, 2020, 142: 4008–4021

    Article  CAS  Google Scholar 

  13. Ramos-Terrón S, Jodlowski AD, Verdugo-Escamilla C, Camacho L, de Miguel G. Chem Mater, 2020, 32: 4024–4037

    Article  Google Scholar 

  14. Ramos-Terrón S, Verdugo-Escamilla C, Camacho L, Miguel G. Adv Opt Mater, 2021, 9: 2100114

    Article  Google Scholar 

  15. Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG, Mohite AD. Nature, 2016, 536: 312–316

    Article  CAS  Google Scholar 

  16. Chen AZ, Shiu M, Ma JH, Alpert MR, Zhang D, Foley BJ, Smilgies DM, Lee SH, Choi JJ. Nat Commun, 2018, 9: 1336

    Article  Google Scholar 

  17. Liu T, Jiang Y, Qin M, Liu J, Sun L, Qin F, Hu L, Xiong S, Jiang X, Jiang F, Peng P, Jin S, Lu X, Zhou Y. Nat Commun, 2019, 10: 878

    Article  Google Scholar 

  18. Yang J, Yang T, Liu D, Zhang Y, Luo T, Lu J, Fang J, Wen J, Deng Z, Liu SF, Chen L, Zhao K. Sol RRL, 2021, 5: 2100286

    Article  CAS  Google Scholar 

  19. Dong Y, Lu D, Xu Z, Lai H, Liu Y. Adv Energy Mater, 2020, 10: 2000694

    Article  CAS  Google Scholar 

  20. Venkatesan NR, Labram JG, Chabinyc ML. ACS Energy Lett, 2018, 3: 380–386

    Article  CAS  Google Scholar 

  21. Yu Y, Liu R, Zhang F, Liu C, Wu Q, Zhang M, Yu H. J Colloid Interface Sci, 2022, 605: 710–717

    Article  CAS  Google Scholar 

  22. Xie Y, Yu H, Duan J, Xu L, Hu B. ACS Appl Mater Interfaces, 2020, 12: 11190–11196

    Article  CAS  Google Scholar 

  23. Liu C, Huang L, Zhou X, Wang X, Yao J, Liu Z, Liu SF, Ma W, Xu B. Sci Bull, 2021, 66: 1419–1428

    Article  CAS  Google Scholar 

  24. Liu J, Leng J, Wu K, Zhang J, Jin S. J Am Chem Soc, 2017, 139: 1432–1435

    Article  CAS  Google Scholar 

  25. Yan L, Hu J, Guo Z, Chen H, Toney MF, Moran AM, You W. ACS Appl Mater Interfaces, 2018, 10: 33187–33197

    Article  CAS  Google Scholar 

  26. Huang Y, Li Y, Lim EL, Kong T, Zhang Y, Song J, Hagfeldt A, Bi D. J Am Chem Soc, 2021, 143: 3911–3917

    Article  CAS  Google Scholar 

  27. Liang J, Zhang Z, Xue Q, Zheng Y, Wu X, Huang Y, Wang X, Qin C, Chen Z, Chen CC. Energy Environ Sci, 2022, 15: 296–310

    Article  CAS  Google Scholar 

  28. Lee DK, Jeong DN, Ahn TK, Park NG. ACS Energy Lett, 2019, 4: 2393–2401

    Article  CAS  Google Scholar 

  29. Wu G, Zhou J, Zhang J, Meng R, Wang B, Xue B, Leng X, Zhang D, Zhang X, Bi S, Zhou Q, Wei Z, Zhou H, Zhang Y. Nano Energy, 2019, 58: 706–714

    Article  CAS  Google Scholar 

  30. Su P, Bai L, Bi H, Liu B, Chen S, Lee D, Yang H, Chen C, Zang Z, Chen J. J Power Sources, 2021, 506: 230213

    Article  CAS  Google Scholar 

  31. Shi J, Gao Y, Gao X, Zhang Y, Zhang J, Jing X, Shao M. Adv Mater, 2019, 31: 1901673

    Article  Google Scholar 

  32. Ke W, Mao L, Stoumpos CC, Hoffman J, Spanopoulos I, Mohite AD, Kanatzidis MG. Adv Energy Mater, 2019, 9: 1803384

    Article  Google Scholar 

  33. Chen W, Han B, Hu Q, Gu M, Zhu Y, Yang W, Zhou Y, Luo D, Liu FZ, Cheng R, Zhu R, Feng SP, Djurišić AB, Russell TP, He Z. Sci Bull, 2021, 66: 991–1002

    Article  CAS  Google Scholar 

  34. He T, Li S, Jiang Y, Qin C, Cui M, Qiao L, Xu H, Yang J, Long R, Wang H, Yuan M. Nat Commun, 2020, 11: 1672

    Article  CAS  Google Scholar 

  35. Lian X, Chen J, Zhang Y, Tian S, Qin M, Li J, Andersen TR, Wu G, Lu X, Chen H. J Mater Chem A, 2019, 7: 18980–18986

    Article  CAS  Google Scholar 

  36. Cai Y, Cui J, Chen M, Zhang M, Han Y, Qian F, Zhao H, Yang S, Yang Z, Bian H, Wang T, Guo K, Cai M, Dai S, Liu Z, Liu SF. Adv Funct Mater, 2020, 31: 2005776

    Article  Google Scholar 

  37. Yang J, Tang W, Yuan R, Chen Y, Wang J, Wu Y, Yin WJ, Yuan N, Ding J, Zhang WH. Chem Sci, 2020, 12: 2050–2059

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Sichuan Science and Technology Program (2021YFH0090) and the Graduate Student Scientific research innovation Fund of Southwest Petroleum University (2021CXZD27). We also thank Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Yu or Zhi-Gang Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Yu, Y., Liu, C. et al. A-site cation engineering enables oriented Ruddlesden-Popper perovskites towards efficient solar cells. Sci. China Chem. 65, 2468–2475 (2022). https://doi.org/10.1007/s11426-022-1349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1349-6

Keywords

Navigation