Skip to main content
Log in

Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Defect states in perovskite films restrict the interfacial stability and open-circuit voltage of perovskite solar cells. Here, aiming at superior interfacial passivation, we investigate the reconfiguration of perovskite interface by the interaction between a series of quaternary ammonium bromides (QAB) and lead—halide (Pb—X) octahedrons. Bromide—iodide substitution reaction or R4NBr addition reaction may occur on the perovskite surface, which is related to the steric hindrance of quaternary ammonium cations. On this basis, the perovskite surface morphology, band structure, growth orientation and defect states are reconstructed via the R4NBr addition reaction. This ordered lead—halide adduct could effectively repair the imperfect perovskite/hole transportation layer interface to suppress non-radiative recombination and ion migration toward ultralong carrier lifetime surpassing 10 µs. The resulting perovskite solar cells yield the efficiency of 23.89% with steady-state efficiency of 23.70%. The passivated cells can sustain 86% of initial efficiency after 200-h operation, which is attributed to the passivation effect and hydrophobic characteristics. This work provides an avenue for reconfiguring perovskite surface by QABs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin K, Xing J, Quan LN, de Arquer FPG, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent EH, Xiong Q, Wei Z. Nature, 2018, 562: 245–248

    Article  CAS  PubMed  Google Scholar 

  2. Miao J, Zhang F. J Mater Chem C, 2019, 7: 1741–1791

    Article  CAS  Google Scholar 

  3. Wu H, Ge Y, Niu G, Tang J. Matter, 2021, 4: 144–163

    Article  CAS  Google Scholar 

  4. Min H, Lee DY, Kim J, Kim G, Lee KS, Kim J, Paik MJ, Kim YK, Kim KS, Kim MG, Shin TJ, Il Seok S. Nature, 2021, 598: 444–450

    Article  CAS  PubMed  Google Scholar 

  5. Kim M, Jeong J, Lu H, Lee TK, Eickemeyer FT, Liu Y, Choi IW, Choi SJ, Jo Y, Kim HB, Mo SI, Kim YK, Lee H, An NG, Cho S, Tress WR, Zakeeruddin SM, Hagfeldt A, Kim JY, Grätzel M, Kim DS. Science, 2022, 375: 302–306

    Article  CAS  PubMed  Google Scholar 

  6. Kim JY, Lee JW, Jung HS, Shin H, Park NG. Chem Rev, 2020, 120: 7867–7918

    Article  CAS  PubMed  Google Scholar 

  7. Qiu J, Lin Y, Ran X, Wei Q, Gao X, Xia Y, Müller-Buschbaum P, Chen Y. Sci China Chem, 2021, 64: 1577–1585

    Article  CAS  Google Scholar 

  8. Wei Q, Ye Z, Ren X, Fu F, Yang Z, Liu S, Yang D. Sci China Chem, 2020, 63: 818–826

    Article  CAS  Google Scholar 

  9. Schulz P, Cahen D, Kahn A. Chem Rev, 2019, 119: 3349–3417

    Article  CAS  PubMed  Google Scholar 

  10. Chen B, Rudd PN, Yang S, Yuan Y, Huang J. Chem Soc Rev, 2019, 48: 3842–3867

    Article  CAS  PubMed  Google Scholar 

  11. Yin WJ, Shi T, Yan Y. Adv Mater, 2014, 26: 4653–4658

    Article  CAS  PubMed  Google Scholar 

  12. Liu N, Yam CY. Phys Chem Chem Phys, 2018, 20: 6800–6804

    Article  CAS  PubMed  Google Scholar 

  13. Azpiroz JM, Mosconi E, Bisquert J, De Angelis F. Energy Environ Sci, 2015, 8: 2118–2127

    Article  CAS  Google Scholar 

  14. Zhou Y, Poli I, Meggiolaro D, De Angelis F, Petrozza A. Nat Rev Mater, 2021, 6: 986–1002

    Article  Google Scholar 

  15. Xue J, Wang R, Yang Y. Nat Rev Mater, 2020, 5: 809–827

    Article  CAS  Google Scholar 

  16. Huang J, Tan S, Lund PD, Zhou H. Energy Environ Sci, 2017, 10: 2284–2311

    Article  Google Scholar 

  17. Li Z, Xiao C, Yang Y, Harvey SP, Kim DH, Christians JA, Yang M, Schulz P, Nanayakkara SU, Jiang CS, Luther JM, Berry JJ, Beard MC, Al-Jassim MM, Zhu K. Energy Environ Sci, 2017, 10: 1234–1242

    Article  CAS  Google Scholar 

  18. Nie W, Blancon JC, Neukirch AJ, Appavoo K, Tsai H, Chhowalla M, Alam MA, Sfeir MY, Katan C, Even J, Tretiak S, Crochet JJ, Gupta G, Mohite AD. Nat Commun, 2016, 7: 11574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia X, Zhang Y, Zhang J, Sun Q, Guo H, Wang Y, Zhang S, Yuan N, Ding J. Sci China Chem, 2020, 63: 827–832

    Article  CAS  Google Scholar 

  20. Wang Y, Gu S, Liu G, Zhang L, Liu Z, Lin R, Xiao K, Luo X, Shi J, Du J, Meng F, Li L, Liu Z, Tan H. Sci China Chem, 2021, 64: 2025–2034

    Article  CAS  Google Scholar 

  21. Wang Q, Dong Q, Li T, Gruverman A, Huang J. Adv Mater, 2016, 28: 6734–6739

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Wu H, Qi W, Zhou X, Li J, Cheng J, Zhao Y, Li Y, Zhang X. Nano Energy, 2020, 77: 105237

    Article  CAS  Google Scholar 

  23. Sutanto AA, Caprioglio P, Drigo N, Hofstetter YJ, Garcia-Benito I, Queloz VIE, Neher D, Nazeeruddin MK, Stolterfoht M, Vaynzof Y, Grancini G. Chem, 2021, 7: 1903–1916

    Article  CAS  Google Scholar 

  24. Zhang H, Shi J, Zhu L, Luo Y, Li D, Wu H, Meng Q. Nano Energy, 2018, 43: 383–392

    Article  CAS  Google Scholar 

  25. Peng J, Khan JI, Liu W, Ugur E, Duong T, Wu Y, Shen H, Wang K, Dang H, Aydin E, Yang X, Wan Y, Weber KJ, Catchpole KR, Laquai F, Wolf S, White TP. Adv Energy Mater, 2018, 8: 1801208

    Article  CAS  Google Scholar 

  26. Li H, Shi J, Deng J, Chen Z, Li Y, Zhao W, Wu J, Wu H, Luo Y, Li D, Meng Q. Adv Mater, 2020, 32: 1907396

    Article  CAS  Google Scholar 

  27. Aberle AG. Sol Energy Mater Sol Cells, 2001, 65: 239–248

    Article  CAS  Google Scholar 

  28. Zhang F, Lu H, Larson BW, Xiao C, Dunfield SP, Reid OG, Chen X, Yang M, Berry JJ, Beard MC, Zhu K. Chem, 2021, 7: 774–785

    Article  CAS  Google Scholar 

  29. Jang YW, Lee S, Yeom KM, Jeong K, Choi K, Choi M, Noh JH. Nat Energy, 2021, 6: 63–71

    Article  CAS  Google Scholar 

  30. Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F, Huang J. Science, 2019, 365: 473–478

    Article  CAS  PubMed  Google Scholar 

  31. Yang S, Wang Y, Liu P, Cheng YB, Zhao HJ, Yang HG. Nat Energy, 2016, 1: 15016

    Article  CAS  Google Scholar 

  32. Zheng J, Engelhard MH, Mei D, Jiao S, Polzin BJ, Zhang JG, Xu W. Nat Energy, 2017, 2: 17012

    Article  CAS  Google Scholar 

  33. Covaliu C, Chioaru L, Craciun L, Oprea O, Jitaru I. Optoelectron Adv Mater, 2011, 5: 1097–1102

    CAS  Google Scholar 

  34. Wang Y, Zhang T, Kan M, Zhao Y. J Am Chem Soc, 2018, 140: 12345–12348

    Article  CAS  PubMed  Google Scholar 

  35. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J. Nature, 2019, 567: 511–515

    Article  CAS  PubMed  Google Scholar 

  36. Liu X, Wang X, Zhang T, Miao Y, Qin Z, Chen Y, Zhao Y. Angew Chem Int Ed, 2021, 60: 12351–12355

    Article  CAS  Google Scholar 

  37. Fan J, Ma Y, Zhang C, Liu C, Li W, Schropp REI, Mai Y. Adv Energy Mater, 2018, 8: 1703421

    Article  CAS  Google Scholar 

  38. Saidaminov MI, Abdelhady AL, Murali B, Alarousu E, Burlakov VM, Peng W, Dursun I, Wang L, He Y, Maculan G, Goriely A, Wu T, Mohammed OF, Bakr OM. Nat Commun, 2015, 6: 7586

    Article  PubMed  Google Scholar 

  39. Yi C, Luo J, Meloni S, Boziki A, Ashari-Astani N, Grätzel C, Zakeeruddin SM, Röthlisberger U, Grätzel M. Energy Environ Sci, 2016, 9: 656–662

    Article  CAS  Google Scholar 

  40. Ciccioli A, Panetta R, Luongo A, Brunetti B, Vecchio Ciprioti S, Mele ML, Latini A. Phys Chem Chem Phys, 2019, 21: 24768–24777

    Article  CAS  PubMed  Google Scholar 

  41. Lin Y, Liu Y, Chen S, Wang S, Ni Z, Van Brackle CH, Yang S, Zhao J, Yu Z, Dai X, Wang Q, Deng Y, Huang J. Energy Environ Sci, 2021, 14: 1563–1572

    Article  CAS  Google Scholar 

  42. Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442–1446

    Article  CAS  PubMed  Google Scholar 

  43. Payne DJ, Egdell RG, Law DSL, Glans PA, Learmonth T, Smith KE, Guo J, Walsh A, Watson GW. J Mater Chem, 2007, 17: 267–277

    Article  CAS  Google Scholar 

  44. Caputo M, Cefarin N, Radivo A, Demitri N, Gigli L, Plaisier JR, Panighel M, Di Santo G, Moretti S, Giglia A, Polentarutti M, De Angelis F, Mosconi E, Umari P, Tormen M, Goldoni A. Sci Rep, 2019, 9: 15159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341–344

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Li Y, Shi J, Zhang H, Wu J, Li D, Luo Y, Wu H, Meng Q. Adv Funct Mater, 2018, 28: 1705220

    Article  CAS  Google Scholar 

  47. Wang X, Wang Y, Zhang T, Liu X, Zhao Y. Angew Chem Int Ed, 2020, 59: 1469–1473

    Article  CAS  Google Scholar 

  48. Dong Y, Li W, Zhang X, Xu Q, Liu Q, Li C, Bo Z. Small, 2016, 12: 1098–1104

    Article  CAS  PubMed  Google Scholar 

  49. Wu J, Cui Y, Yu B, Liu K, Li Y, Li H, Shi J, Wu H, Luo Y, Li D, Meng Q. Adv Funct Mater, 2019, 29: 1905336

    Article  CAS  Google Scholar 

  50. Walter T, Herberholz R, Müller C, Schock HW. J Appl Phys, 1996, 80: 4411–4420

    Article  CAS  Google Scholar 

  51. Wu J, Shi J, Li Y, Li H, Wu H, Luo Y, Li D, Meng Q. Adv Energy Mater, 2019, 9: 1901352

    Article  CAS  Google Scholar 

  52. Kim M, Alfano A, Perotto G, Serri M, Dengo N, Mezzetti A, Gross S, Prato M, Salerno M, Rizzo A, Sorrentino R, Cescon E, Meneghesso G, Di Fonzo F, Petrozza A, Gatti T, Lamberti F. Commun Mater, 2021, 2: 6

    Article  CAS  Google Scholar 

  53. Lamberti F, Schmitz F, Chen W, He Z, Gatti T. Sol RRL, 2021, 5: 2100514

    Article  CAS  Google Scholar 

  54. Xue R, Zhang M, Luo D, Chen W, Zhu R, Yang YM, Li Y, Li Y. Sci China Chem, 2020, 63: 987–996

    Article  CAS  Google Scholar 

  55. Zhumekenov AA, Burlakov VM, Saidaminov MI, Aloffi A, Haque MA, Turedi B, Davaasuren B, Dursun I, Cho N, El-Zohry AM, Bastiani MD, Giugni A, Torre B, Fabrizio ED, Mohammed OF, Rothenberger A, Wu T, Goriely A, Bakr OM. ACS Energy Lett, 2017, 2: 1782–1788

    Article  CAS  Google Scholar 

  56. Yu B, Shi J, Tan S, Cui Y, Zhao W, Wu H, Luo Y, Li D, Meng Q. Angew Chem Int Ed, 2021, 60: 13436–13443

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51872321, 11874402, 52172260, 52072402, 52102332 and 52102267), Ministry of Sciecnce and Technology of the People’s Republic of China (2021YFB3800103), and the Fundamental Research Fund for the Central University, Nankai University (023/63213101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Li or Qingbo Meng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, Z., Chen, Z. et al. Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells. Sci. China Chem. 65, 1185–1195 (2022). https://doi.org/10.1007/s11426-022-1280-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1280-8

Navigation