Skip to main content
Log in

Vascular disrupting agent-induced amplification of tumor targeting and prodrug activation boosts anti-tumor efficacy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Vadimezan, one of the typical vascular disrupting agents (VDAs) currently in clinical trials, has been extensively implemented for cancer research, whereas its clinical efficacy is adversely affected by the inevitable side effects. Inspired by Vadimezan-induced intratumoral coagulation activation and hypoxia aggravation, we report a strategy by utilizing these biological effects to achieve targeted delivery and activation of hypoxia-activated prodrug (HAP) thus to maximize the therapeutic effect of Vadimezan. By encapsulating HAP tirapazamine into poly (lactic-co-glycolic acid) (PLGA) nanocarriers along with the modification of clot-binding peptide, the obtained nanoplatform could target tumors under the coagulation activation effect of Vadimezan Meanwhile, the aggravated hypoxia tumor microenvironment induced by Vadimezan can also boost hypoxia-activated chemotherapy. In the murine tumor model, this strategy showed 80.0% suppression of tumor growth, indicating its great potential in tumor treatment. This study offers an ingenious tactic for the combination of vascular disrupting therapy and hypoxia-activated chemotherapy, which may open up a window of the VDAs-based combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milowsky MI, Nanus DM, Kostakoglu L, Sheehan CE, Vallabhajosula S, Goldsmith SJ, Ross JS, Bander NH. J Clin Oncol, 2007, 25: 540–547

    Article  CAS  PubMed  Google Scholar 

  2. Wei G, Wang Y, Huang X, Yang G, Zhao J, Zhou S. Adv Healthc Mater, 2018, 7: 1801094

    Article  Google Scholar 

  3. Wei G, Yang G, Wei B, Wang Y, Zhou S. Acta Biomater, 2019, 100: 365–377

    Article  CAS  PubMed  Google Scholar 

  4. Jayson GC, Kerbel R, Ellis LM, Harris AL. Lancet, 2016, 388: 518–529

    Article  CAS  PubMed  Google Scholar 

  5. Hinnen P, Eskens FALM. Br J Cancer, 2007, 96: 1159–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cooney MM, van Heeckeren W, Bhakta S, Ortiz J, Remick SC. Nat Rev Clin Oncol, 2006, 3: 682–692

    Article  CAS  Google Scholar 

  7. Lorusso PM, Boerner SA, Hunsberger S. J Clin Oncol, 2011, 29: 2952–2955

    Article  PubMed  Google Scholar 

  8. Song W, Tang Z, Zhang D, Li M, Gu J, Chen X. Chem Sci, 2016, 7: 728–736

    Article  CAS  PubMed  Google Scholar 

  9. Lin KY, Kwon EJ, Lo JH, Bhatia SN. Nano Today, 2014, 9: 550–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. Chem Biol Drug Des, 2018, 91: 996–1006

    Article  CAS  PubMed  Google Scholar 

  11. Horsman MR, Siemann DW. Cancer Res, 2006, 66: 11520–11539

    Article  CAS  PubMed  Google Scholar 

  12. Tozer GM, Kanthou C, Baguley BC. Nat Rev Cancer, 2005, 5: 423–435

    Article  CAS  PubMed  Google Scholar 

  13. Hong S, Zheng DW, Zhang C, Huang QX, Cheng SX, Zhang XZ. Sci Adv, 2020, 6: eabb0020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shen N, Wu J, Yang C, Yu H, Yang S, Li T, Chen J, Tang Z, Chen X. Nano Lett, 2019, 19: 8021–8031

    Article  CAS  PubMed  Google Scholar 

  15. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Stuart Foster F, Benezra R, Kerbel RS. Science, 2006, 313: 1785–1787

    Article  CAS  PubMed  Google Scholar 

  16. Eskens FALM, Tresca P, Tosi D, Van Doorn L, Fontaine H, Van der Gaast A, Veyrat-Follet C, Oprea C, Hospitel M, Dieras V. Br J Cancer, 2014, 110: 2170–2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cesca M, Bizzaro F, Zucchetti M, Giavazzi R. Front Oncol, 2013, 3: 259

    Article  PubMed  PubMed Central  Google Scholar 

  18. Satterlee AB, Rojas JD, Dayton PA, Huang L. Theranostics, 2017, 7: 253–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El Kaffas A, Tran W, Czarnota GJ. Technol Cancer Res Treat, 2012, 11: 421–432

    Article  PubMed  Google Scholar 

  20. Clémenson C, Chargari C, Deutsch E. Crit Rev Oncol Hematol, 2013, 86: 143–160

    Article  PubMed  Google Scholar 

  21. Theys J, Pennington O, Dubois L, Anlezark G, Vaughan T, Mengesha A, Landuyt W, Anné J, Burke PJ, Dûrre P, Wouters BG, Minton NP, Lambin P. Br J Cancer, 2006, 95: 1212–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Wang Z, Chen Z, Ci T, Chen G, Wen D, Li R, Wang J, Meng H, Bryan Bell R, Gu Z, Dotti G, Gu Z. Nat Commun, 2021, 12: 2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen J, Jiang Z, Xu W, Sun T, Zhuang X, Ding J, Chen X. Nano Lett, 2020, 20: 6191–6198

    Article  CAS  PubMed  Google Scholar 

  24. Jiang J, Shen N, Ci T, Tang Z, Gu Z, Li G, Chen X. Adv Mater, 2019, 31: 1904278

    Article  CAS  Google Scholar 

  25. Yang S, Tang Z, Hu C, Zhang D, Shen N, Yu H, Chen X. Adv Mater, 2019, 31: 1805955

    Article  Google Scholar 

  26. Wang Y, Shen N, Wang Y, Zhang Y, Tang Z, Chen X. Adv Mater, 2021, 33: 2002094

    Article  CAS  Google Scholar 

  27. Han W, Shi L, Xie B, Wan J, Ren L, Wang Y, Chen X, Wang H. ACS Appl Mater Interfaces, 2020, 12: 1707–1720

    Article  CAS  PubMed  Google Scholar 

  28. Song W, Tang Z, Zhang D, Yu H, Chen X. Small, 2015, 11: 3755–3761

    Article  CAS  PubMed  Google Scholar 

  29. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R. Nature, 2005, 436: 568–572

    Article  CAS  PubMed  Google Scholar 

  30. Zhang M, Ye JJ, Xia Y, Wang ZY, Li CX, Wang XS, Yu W, Song W, Feng J, Zhang XZ. ACS Nano, 2019, 13: 14230–14240

    Article  CAS  PubMed  Google Scholar 

  31. Li B, Chu T, Wei J, Zhang Y, Qi F, Lu Z, Gao C, Zhang T, Jiang E, Xu J, Xu J, Li S, Nie G. Nano Lett, 2021, 21: 2588–2595

    Article  CAS  PubMed  Google Scholar 

  32. Ma Z, Zhang Y, Dai X, Zhang W, Foda MF, Zhang J, Zhao Y, Han H. Adv Mater, 2021, 33: 2104504

    Article  CAS  Google Scholar 

  33. Wang Y, Xie Y, Li J, Peng ZH, Sheinin Y, Zhou J, Oupický D. ACS Nano, 2017, 11: 2227–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, Fang RH, Gao W, Zhang L. Nat Nanotech, 2018, 13: 1182–1190

    Article  CAS  Google Scholar 

  35. Marrache S, Dhar S. Proc Natl Acad Sci USA, 2012, 109: 16288–16293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wen J, Lu H, Liu D, Gao H. Chin J Polym Sci, 2016, 34: 730–738

    Article  CAS  Google Scholar 

  37. Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Sci China Chem, 2022, 65: 1010–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chung EJ, Cheng Y, Morshed R, Nord K, Han Y, Wegscheid ML, Auffinger B, Wainwright DA, Lesniak MS, Tirrell MV. Biomaterials, 2014, 35: 1249–1256

    Article  CAS  PubMed  Google Scholar 

  39. He PP, Li XD, Fan JQ, Fan Y, Yang PP, Li BN, Cong Y, Yang C, Zhang K, Wang ZQ, Hou DY, Wang H, Wang L. CCS Chem, 2020, 2: 539–554

    Article  CAS  Google Scholar 

  40. Li S, Zhang Y, Ho SH, Li B, Wang M, Deng X, Yang N, Liu G, Lu Z, Xu J, Shi Q, Han JY, Zhang L, Wu Y, Zhao Y, Nie G. Nat Biomed Eng, 2020, 4: 732–742

    Article  CAS  PubMed  Google Scholar 

  41. Wei P, Liu L, Yuan W, Yang J, Li R, Yi T. Sci China Chem, 2020, 63: 1153–1158

    Article  CAS  Google Scholar 

  42. Mo R, Gu Z. Mater Today, 2016, 19: 274–283

    Article  CAS  Google Scholar 

  43. Hong S, Huang QX, Zhong Z, Rong L, Zhang XZ. CCS Chem, 2021, 4: 1770–1787

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51988102, 51833007, 22135005, 52173136 and 21721005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Zheng Zhang or Xuesi Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information of

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Huang, QX., Ji, P. et al. Vascular disrupting agent-induced amplification of tumor targeting and prodrug activation boosts anti-tumor efficacy. Sci. China Chem. 65, 1994–2004 (2022). https://doi.org/10.1007/s11426-022-1347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1347-9

Keywords

Navigation