Skip to main content
Log in

Melt- and air-processed selenium thin-film solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Elemental selenium (Se), as the world’s first but long-neglected photovoltaic material, has regained great interest recently in tandem solar cells as top cells due to its wide bandgap (∼1.8 eV), simple, non-toxic and earth-abundant composition, and intrinsic environmental stability. In particular, Se possesses the lowest melting point of 217 °C among the photovoltaic absorbers reported so far, endowing Se with a unique advantage of film fabrication by blade coating the Se melt on substrate. However, the poor wettability of Se melt on widely-used photovoltaic functional layers such as TiO2 limits its melt processing. Here we introduce a wettability-modification strategy that decreases the contact angle of Se melt on substrate and improves the wettability by appropriately enhancing the heating temperature of molten Se while avoiding Se volatilization. We further reveal the mechanism of the inherent air stability of Se that originates from the high activation energy of oxygen chemisorption on Se (3.21 eV). This enables the realization of compact Se films through melt-based blade coating in ambient air. The resulting Se solar cells exhibit an efficiency of 3.5%. Unencapsulated devices show no efficiency loss after 1,000 h of storage under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith W. Nature, 1873, 7: 303–303

    Article  Google Scholar 

  2. Adams WG, Day RE. Proc R Soc London, 1877, 25: 113–117

    Article  Google Scholar 

  3. Fritts CE. Am J Sci, 1883, 26: 465–472

    Article  Google Scholar 

  4. Chapin DM, Fuller CS, Pearson GL. J Appl Phys, 1954, 25: 676–677

    Article  CAS  Google Scholar 

  5. Nakada T, Kunioka A. Jpn J Appl Phys, 1985, 24: L536–L538

    Article  Google Scholar 

  6. Todorov TK, Singh S, Bishop DM, Gunawan O, Lee YS, Gershon TS, Brew KW, Antunez PD, Haight R. Nat Commun, 2017, 8: 682

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hadar I, Song T, Ke W, Kanatzidis MG. Adv Energy Mater, 2019, 9: 1802766

    Article  Google Scholar 

  8. Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park SM, Chen G, Atapattu HR, Graham KR, Xu J, Zhu J, Li L, Zhang C, Sargent EH, Tan H. Nature, 2022, 603: 73–78

    Article  CAS  PubMed  Google Scholar 

  9. Li K, Tang J. Sci China Chem, 2021, 64: 1605–1606

    Article  CAS  Google Scholar 

  10. Chen W, Zhu Y, Xiu J, Chen G, Liang H, Liu S, Xue H, Birgersson E, Ho JW, Qin X, Lin J, Ma R, Liu T, He Y, Ng AMC, Guo X, He Z, Yan H, Djurišić AB, Hou Y. Nat Energy, 2022, 7: 229–237

    Article  CAS  Google Scholar 

  11. Feng M, Liu SC, Hu L, Wu J, Liu X, Xue DJ, Hu JS, Wan LJ. J Am Chem Soc, 2021, 143: 9664–9671

    Article  CAS  Google Scholar 

  12. Leijtens T, Bush KA, Prasanna R, McGehee MD. Nat Energy, 2018, 3: 828–838

    Article  CAS  Google Scholar 

  13. Han Q, Hsieh YT, Meng L, Wu JL, Sun P, Yao EP, Chang SY, Bae SH, Kato T, Bermudez V, Yang Y. Science, 2018, 361: 904–908

    Article  CAS  PubMed  Google Scholar 

  14. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  15. Liu SC, Li Z, Yang Y, Wang X, Chen YX, Xue DJ, Hu JS. J Am Chem Soc, 2019, 141: 18075–18082

    Article  CAS  PubMed  Google Scholar 

  16. Wu J, Liu SC, Li Z, Wang S, Xue DJ, Lin Y, Hu JS. Natl Sci Rev, 2021, 8: nwab047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu M, Niu G, Tang J. J Mater Chem C, 2019, 7: 2199–2206

    Article  CAS  Google Scholar 

  18. Zhu M, Hao F, Ma L, Song TB, Miller CE, Wasielewski MR, Li X, Kanatzidis MG. ACS Energy Lett, 2016, 1: 469–473

    Article  CAS  Google Scholar 

  19. Youngman TH, Nielsen R, Crovetto A, Seger B, Hansen O, Chorkendorff I, Vesborg PCK. Sol RRL, 2021, 5: 2100111

    Article  CAS  Google Scholar 

  20. Hadar I, Hu X, Luo ZZ, Dravid VP, Kanatzidis MG. ACS Energy Lett, 2019, 4: 2137–2143

    Article  CAS  Google Scholar 

  21. Liu W, Yu F, Fan W, Li WS, Zhang Q. Small, 2021, 17: 2101226

    Article  CAS  Google Scholar 

  22. Wu J, Zhang Z, Tong C, Li D, Mei A, Rong Y, Zhou Y, Han H, Hu Y. ACS Appl Mater Interfaces, 2019, 11: 33879–33885

    Article  CAS  PubMed  Google Scholar 

  23. Mitzi DB, Dimitrakopoulos CD, Rosner J, Medeiros DR, Xu Z, Noyan C. Adv Mater, 2002, 14: 1772–1776

    Article  CAS  Google Scholar 

  24. Juozapavicius M, O’Regan BC, Anderson AY, Grazulevicius JV, Mimaite V. Org Electron, 2012, 13: 23–30

    Article  CAS  Google Scholar 

  25. Li T, Dunlap-Shohl WA, Han Q, Mitzi DB. Chem Mater, 2017, 29: 6200–6204

    Article  CAS  Google Scholar 

  26. Liu W, Said AA, Fan WJ, Zhang Q. ACS Appl Energy Mater, 2020, 3: 7345–7352

    Article  CAS  Google Scholar 

  27. Degtyareva O, Hernández ER, Serrano J, Somayazulu M, Mao H, Gregoryanz E, Hemley RJ. J Chem Phys, 2007, 126: 084503

    Article  PubMed  Google Scholar 

  28. Speight JG. Lange’s Handbook of Chemistry. New York: McGraw Hill Book Co., 2005. 1.199–1.225

    Google Scholar 

  29. Vafaei S, Podowski MZ. Adv Colloid Interface Sci, 2005, 113: 133–146

    Article  CAS  PubMed  Google Scholar 

  30. Lee LH. J Non-Cryst Solids, 1971, 6: 213–220

    Article  CAS  Google Scholar 

  31. Xiao Y, Zuo C, Zhong J, Wu W, Shen L, Ding L. Adv Energy Mater, 2021, 11: 2100378

    Article  CAS  Google Scholar 

  32. Li J, Munir R, Fan Y, Niu T, Liu Y, Zhong Y, Yang Z, Tian Y, Liu B, Sun J, Smilgies DM, Thoroddsen S, Amassian A, Zhao K, Liu SF. Joule, 2018, 2: 1313–1330

    Article  CAS  Google Scholar 

  33. Wu WQ, Yang Z, Rudd PN, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J. Sci Adv, 2019, 5: eaav8925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qin J, Qiu G, Jian J, Zhou H, Yang L, Charnas A, Zemlyanov DY, Xu CY, Xu X, Wu W, Wang H, Ye PD. ACS Nano, 2017, 11: 10222–10229

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J, Ji W, Ruoff RS, Sutter P. Chem Mater, 2016, 28: 8330–8339

    Article  CAS  Google Scholar 

  36. Kc S, Longo RC, Wallace RM, Cho K. J Appl Phys, 2015, 117: 135301

    Article  Google Scholar 

  37. Liu SC, Dai CM, Min Y, Hou Y, Proppe AH, Zhou Y, Chen C, Chen S, Tang J, Xue DJ, Sargent EH, Hu JS. Nat Commun, 2021, 12: 670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (21922512, 21875264), Chinese Postdoctoral Science Foundation (2021MD703865), and the Youth Innovation Promotion CAS (Y2021014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-Jiang Xue.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Li, Z., Feng, M. et al. Melt- and air-processed selenium thin-film solar cells. Sci. China Chem. 65, 2197–2204 (2022). https://doi.org/10.1007/s11426-022-1332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1332-3

Keywords

Navigation