Skip to main content
Log in

N-heterocyclic carbene-catalyzed atroposelective synthesis of axially chiral 5-aryl 2-pyrones from enals

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Axially chiral molecules have been widely used in inorganic, material and medicinal chemistry. Compared with well-established N-heterocyclic carbene (NHC)-catalyzed asymmetric construction of centrally chiral molecules, NHC-catalyzed atroposelective synthesis of axially chiral molecules remains largely underdeveloped. Notably, alkynyl acyl azolium intermediates were commonly used in constructing a heteroaryl ring to furnish axially enantioenriched heteroaryl-aryls. The inherent character of the intermediates often led to react with sterically hindered substrates difficultly. Herein, we have successfully disclosed the atroposelective synthesis of axially chiral heteroaryl-aryls from sterically hindered enols through the use of chiral NHCs as catalysts for highly enantioselective Coates-Claisen rearrangements via catalytically generated α,β-unsaturated acyl azoliums. This approach will enable the concise synthesis of valuable tetra-ortho-substituted 2-pyrones in one step with good yield and chirality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobsen EN, Pfaltz A, Yamamoto H. Comprehensive Asymmetric Catalysis. Vols. I–III, Supplements I and II. New York: Springer, 1999

    Google Scholar 

  2. Carreira EM, Yamamoto H. Comprehensive Chirality. Vol. 1–9. London: Elsevier Science, 2012

    Google Scholar 

  3. The Nobel Prize in Chemistry 2021. NobelPrize.org. Nobel Prize Outreach AB 2021

  4. Bugaut X, Glorius F. Chem Soc Rev, 2012, 41: 3511–3522

    Article  CAS  PubMed  Google Scholar 

  5. De Sarkar S, Biswas A, Samanta RC, Studer A. Chem Eur J, 2013, 19: 4664–4678

    Article  CAS  PubMed  Google Scholar 

  6. Ryan SJ, Candish L, Lupton DW. Chem Soc Rev, 2013, 42: 4906–4917

    Article  CAS  PubMed  Google Scholar 

  7. Hopkinson MN, Richter C, Schedler M, Glorius F. Nature, 2014, 510: 485–496

    Article  CAS  PubMed  Google Scholar 

  8. Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem Rev, 2015, 115: 9307–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Menon RS, Biju AT, Nair V. Chem Soc Rev, 2015, 44: 5040–5052

    Article  CAS  PubMed  Google Scholar 

  10. Chen XY, Liu Q, Chauhan P, Enders D. Angew Chem Int Ed, 2018, 57: 3862–3873

    Article  CAS  Google Scholar 

  11. Mondal S, Yetra SR, Mukherjee S, Biju AT. Acc Chem Res, 2019, 52: 425–436

    Article  CAS  PubMed  Google Scholar 

  12. Chen XY, Gao ZH, Ye S. Acc Chem Res, 2020, 53: 690–702

    Article  CAS  PubMed  Google Scholar 

  13. Ohmiya H. ACS Catal, 2020, 10: 6862–6869

    Article  CAS  Google Scholar 

  14. Chen X, Wang H, Jin Z, Chi YR. Chin J Chem, 2020, 38: 1167–1202

    Article  CAS  Google Scholar 

  15. Barik S, Biju AT. Chem Commun, 2020, 56: 15484–15495

    Article  CAS  Google Scholar 

  16. Das TK, Biju AT. Chem Commun, 2020, 56: 8537–8552

    Article  CAS  Google Scholar 

  17. Biju AT. N-heterocyclic Carbenes in Organocatalysis. Weinheim: Wiley-VCH, 2019

    Google Scholar 

  18. Li T, Jin Z, Chi YR. Sci China Chem, 2022, 65: 210–223

    Article  CAS  Google Scholar 

  19. Chen KQ, Sheng H, Liu Q, Shao PL, Chen XY. Sci China Chem, 2021, 64: 7–16

    Article  CAS  Google Scholar 

  20. Lv J, Xu J, Pan X, Jin Z, Chi YR. Sci China Chem, 2021, 64: 985–990

    Article  CAS  Google Scholar 

  21. Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem Rev, 2015, 115: 11239–11300

    Article  CAS  PubMed  Google Scholar 

  22. Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew Chem Int Ed, 2005, 44: 5384–5427

    Article  CAS  Google Scholar 

  23. Smyth JE, Butler NM, Keller PA. Nat Prod Rep, 2015, 32: 1562–1583

    Article  CAS  PubMed  Google Scholar 

  24. Shen D, Xu Y, Shi SL. J Am Chem Soc, 2019, 141: 14938–14945

    Article  CAS  PubMed  Google Scholar 

  25. Tang W, Zhang X. Chem Rev, 2003, 103: 3029–3070

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Kwong F, Yu W, Chan A. Coord Chem Rev, 2007, 251: 2119–2144

    Article  CAS  Google Scholar 

  27. Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev, 2014, 114: 9047–9153

    Article  CAS  PubMed  Google Scholar 

  28. Giacalone F, Gruttadauria M, Agrigento P, Noto R. Chem Soc Rev, 2012, 41: 2406–2447

    Article  CAS  PubMed  Google Scholar 

  29. Xiao Y, Sun Z, Guo H, Kwon O. Beilstein J Org Chem, 2014, 10: 2089–2121

    Article  PubMed  PubMed Central  Google Scholar 

  30. Akiyama T, Mori K. Chem Rev, 2015, 115: 9277–9306

    Article  CAS  PubMed  Google Scholar 

  31. Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew Chem Int Ed, 2009, 48: 6398–6401

    Article  CAS  Google Scholar 

  32. Laplante SRD, Fader L, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SPF, Edwards PJ. J Med Chem, 2011, 54: 7005–7022

    Article  CAS  PubMed  Google Scholar 

  33. LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem, 2011, 6: 505–513

    Article  CAS  PubMed  Google Scholar 

  34. McCormick MH, Stark WM, Pittenger GE, Pittenger RC, McGuire JM. Antibiot Annu, 1955, 3: 606–611

    PubMed  Google Scholar 

  35. Kupchan SM, Britton RW, Ziegler MF, Gilmore CJ, Restivo RJ, Bryan RF. J Am Chem Soc, 1973, 95: 1335–1336

    Article  CAS  PubMed  Google Scholar 

  36. Hallock YF, Manfredi KP, Blunt JW, Cardellina Ii JH, Schaeffer M, Gulden KP, Bringmann G, Lee AY, Clardy J. J Org Chem, 1994, 59: 6349–6355

    Article  CAS  Google Scholar 

  37. Bringmann G, Menche D. Acc Chem Res, 2001, 34: 615–624

    Article  CAS  PubMed  Google Scholar 

  38. Kozlowski MC, Morgan BJ, Linton EC. Chem Soc Rev, 2009, 38: 3193–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hughes CC, Kauffman CA, Jensen PR, Fenical W. J Org Chem, 2010, 75: 3240–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Chem Rev, 2015, 115: 10081–10206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Collins BSL, Kistemaker JCM, Otten E, Feringa BL. Nat Chem, 2016, 8: 860–866

    Article  CAS  Google Scholar 

  42. Takaishi K, Yasui M, Ema T. J Am Chem Soc, 2018, 140: 5334–5338

    Article  CAS  PubMed  Google Scholar 

  43. Sapotta M, Spenst P, Saha-Möller CR, Würthner F. Org Chem Front, 2019, 6: 892–899

    Article  CAS  Google Scholar 

  44. For reviews, see: Song R, Xie Y, Jin Z, Chi YR. Angew Chem Int Ed, 2021, 60: 26026–26037

    Article  CAS  Google Scholar 

  45. Wang J, Zhao C, Wang J. ACS Catal, 2021, 11: 12520–12531

    Article  CAS  Google Scholar 

  46. Feng J, Du D. Tetrahedron, 2021, 100: 132456

    Article  CAS  Google Scholar 

  47. Lu S, Poh SB, Zhao Y. Angew Chem Int Ed, 2014, 53: 11041–11045

    Article  CAS  Google Scholar 

  48. Candish L, Levens A, Lupton DW. Chem Sci, 2015, 6: 2366–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao C, Guo D, Munkerup K, Huang KW, Li F, Wang J. Nat Commun, 2018, 9: 611

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang G, Guo D, Meng D, Wang J. Nat Commun, 2019, 10: 3062

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lu S, Ong JY, Yang H, Poh SB, Liew X, Seow CSD, Wong MW, Zhao Y. J Am Chem Soc, 2019, 141: 17062–17067

    Article  CAS  PubMed  Google Scholar 

  52. Lu S, Poh SB, Rong ZQ, Zhao Y. Org Lett, 2019, 21: 6169–6172

    Article  CAS  PubMed  Google Scholar 

  53. Xu K, Li W, Zhu S, Zhu T. Angew Chem Int Ed, 2019, 58: 17625–17630

    Article  CAS  Google Scholar 

  54. Wu YT, Zhang R, Duan XY, Yu HF, Sun BY, Qi J. Chem Commun, 2020, 56: 9854–9857

    Article  CAS  Google Scholar 

  55. Barik S, Shee S, Das S, Gonnade RG, Jindal G, Mukherjee S, Biju AT. Angew Chem Int Ed, 2021, 60: 12264–12268

    Article  CAS  Google Scholar 

  56. Zhang CL, Gao YY, Wang HY, Zhou BA, Ye S. Angew Chem Int Ed, 2021, 60: 13918–13922

    Article  CAS  Google Scholar 

  57. Li T, Mou C, Qi P, Peng X, Jiang S, Hao G, Xue W, Yang S, Hao L, Chi YR, Jin Z. Angew Chem Int Ed, 2021, 60: 9362–9367

    Article  CAS  Google Scholar 

  58. Ma R, Wang X, Zhang Q, Chen L, Gao J, Feng J, Wei D, Du D. Org Lett, 2021, 23: 4267–4272

    Article  CAS  PubMed  Google Scholar 

  59. Jin J, Huang X, Xu J, Li T, Peng X, Zhu X, Zhang J, Jin Z, Chi YR. Org Lett, 2021, 23: 3991–3996

    Article  CAS  PubMed  Google Scholar 

  60. McGlacken GP, Fairlamb IJS. Nat Prod Rep, 2005, 22: 369–385

    Article  CAS  PubMed  Google Scholar 

  61. Tempone AG, Ferreira DD, Lima ML, Costa Silva TA, Borborema SET, Reimão JQ, Galuppo MK, Guerra JM, Russell AJ, Wynne GM, Lai RYL, Cadelis MM, Copp BR. Eur J Medicinal Chem, 2017, 139: 947–960

    Article  CAS  Google Scholar 

  62. Al-Khdhairawi AAQ, Cordell GA, Thomas NF, Shivanagere Nagojappa NB, Weber JFF. Org Biomol Chem, 2019, 17: 8943–8957

    Article  CAS  PubMed  Google Scholar 

  63. Markó IE, Warriner SL, Augustyns B. Org Lett, 2000, 2: 3123–3125

    Article  PubMed  Google Scholar 

  64. Wang Y, Li H, Wang YQ, Liu Y, Foxman BM, Deng L. J Am Chem Soc, 2007, 129: 6364–6365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meguro T, Chen S, Kanemoto K, Yoshida S, Hosoya T. Chem Lett, 2019, 48: 582–585

    Article  CAS  Google Scholar 

  66. Darzi ER, Barber JS, Garg NK. Angew Chem Int Ed, 2019, 58: 9419–9424

    Article  CAS  Google Scholar 

  67. Cole CJF, Fuentes L, Snyder SA. Chem Sci, 2020, 11: 2175–2180

    Article  CAS  Google Scholar 

  68. Si XG, Zhang ZM, Zheng CG, Li ZT, Cai Q. Angew Chem Int Ed, 2020, 59: 18412–18417

    Article  CAS  Google Scholar 

  69. Xu MM, You XY, Zhang YZ, Lu Y, Tan K, Yang L, Cai Q. J Am Chem Soc, 2021, 143: 8993–9001

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Huang J, Guo Y, Li L, Fu Z, Huang W. Angew Chem Int Ed, 2018, 57: 4594–4598

    Article  CAS  Google Scholar 

  71. Wang G, Shi Q, Hu W, Chen T, Guo Y, Hu Z, Gong M, Guo J, Wei D, Fu Z, Huang W. Nat Commun, 2020, 11: 946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang G, Zhang QC, Wei C, Zhang Y, Zhang L, Huang J, Wei D, Fu Z, Huang W. Angew Chem Int Ed, 2021, 60: 7913–7919

    Article  CAS  Google Scholar 

  73. Wang G, Zhang M, Guan Y, Zhang Y, Zheng P, Wei D, Fu Z, Chi YR, Huang W. Research, 2021, 2020: 8685436

    Google Scholar 

  74. Kaeobamrung J, Mahatthananchai J, Zheng P, Bode JW. J Am Chem Soc, 2010, 132: 8810–8812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahatthananchai J, Kaeobamrung J, Bode JW. ACS Catal, 2012, 2: 494–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lyngvi E, Bode JW, Schoenebeck F. Chem Sci, 2012, 3: 2346–2350

    Article  CAS  PubMed  Google Scholar 

  77. Kravina AG, Mahatthananchai J, Bode JW. Angew Chem Int Ed, 2012, 51: 9433–9436

    Article  CAS  Google Scholar 

  78. Cheng J, Huang Z, Chi YR. Angew Chem Int Ed, 2013, 52: 8592–8596

    Article  CAS  Google Scholar 

  79. Candish L, Lupton DW. J Am Chem Soc, 2013, 135: 58–61

    Article  CAS  PubMed  Google Scholar 

  80. Mahatthananchai J, Bode JW. Acc Chem Res, 2014, 47: 696–707

    Article  CAS  PubMed  Google Scholar 

  81. Yetra SR, Kaicharla T, Kunte SS, Gonnade RG, Biju AT. Org Lett, 2013, 15: 5202–5205

    Article  CAS  PubMed  Google Scholar 

  82. García-López JA, Greaney MF. Chem Soc Rev, 2016, 45: 6766–6798

    Article  PubMed  Google Scholar 

  83. Takikawa H, Nishii A, Sakai T, Suzuki K. Chem Soc Rev, 2018, 47: 8030–8056

    Article  CAS  PubMed  Google Scholar 

  84. Werz DB, Biju AT. Angew Chem Int Ed, 2020, 59: 3385–3398

    Article  CAS  Google Scholar 

  85. Shi J, Li L, Li Y. Chem Rev, 2021, 121: 3892–4044

    Article  CAS  PubMed  Google Scholar 

  86. Fluegel LL, Hoye TR. Chem Rev, 2021, 121: 2413–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roy T, Biju AT. Chem Commun, 2018, 54: 2580–2594

    Article  CAS  Google Scholar 

  88. Bhojgude SS, Bhunia A, Biju AT. Acc Chem Res, 2016, 49: 1658–1670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0204704), the National Natural Science Foundation of China (21602105), the General Program of Chongqing Natural Science Foundation Project (cstc2020jcyj-msxmX0712), Ningbo Natural Science Foundation (202003N4063), and the Natural Science Foundation of Jiangsu Province (BK20221309).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Huang or Zhenqian Fu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Huang, J., Zhang, L. et al. N-heterocyclic carbene-catalyzed atroposelective synthesis of axially chiral 5-aryl 2-pyrones from enals. Sci. China Chem. 65, 1953–1961 (2022). https://doi.org/10.1007/s11426-022-1327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1327-4

Keywords

Navigation