Skip to main content
Log in

Carbene-catalyzed activation of cyclopropylcarbaldehydes for mannich reaction and δ-lactam formation: remote enantioselecitvity control and dynamic kinetic asymmetric transformation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An N-heterocyclic carbene (NHC)-catalyzed enantioselective Mannich reaction of the remote γ-carbon of cyclopropylcarbaldehydes is disclosed for the first time. Diastereo- and enantiomerically enriched multicyclic δ-lactam compound is afforded as the main product from 8 possible stereo-specific isomers through dynamic kinetic asymmetric transformation (DYKAT) processes. Multiple chiral functional molecules can be afforded from the lactam products through simple protocols with retentions of the optical purities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected reviews, see (a) Danishefsky S. Acc Chem Res, 1979, 12: 66–72

    Article  CAS  Google Scholar 

  2. Reissig HU, Zimmer R. Chem Rev, 2003, 103: 1151–1196

    Article  CAS  PubMed  Google Scholar 

  3. Carson CA, Kerr MA. Chem Soc Rev, 2009, 38: 3051–3060

    Article  CAS  PubMed  Google Scholar 

  4. Cavitt MA, Phun LH, France S. Chem Soc Rev, 2014, 43: 804–818

    Article  CAS  PubMed  Google Scholar 

  5. Schneider TF, Kaschel J, Werz DB. Angew Chem Int Ed, 2014, 53: 5504–5523

    Article  CAS  Google Scholar 

  6. Werz DB, Biju AT. Angew Chem Int Ed, 2020, 59: 3385–3398

    Article  CAS  Google Scholar 

  7. For selected examples, see: (g) Reissig HU, Hirsch E. Angew Chem Int Ed Engl, 1980, 19: 813–814

    Article  Google Scholar 

  8. Brückner C, Reissig H-U. Angew Chem Int Ed, 1985, 24: 588–589

    Article  Google Scholar 

  9. Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew Chem Int Ed, 2019, 58: 1955–1959

    Article  CAS  Google Scholar 

  10. Petzold M, Jones PG, Werz DB. Angew Chem Int Ed, 2019, 58: 6225–6229

    Article  CAS  Google Scholar 

  11. Xie MS, Zhao GF, Qin T, Suo YB, Qu GR, Guo HM. Chem Commun, 2019, 55: 1580–1583

    Article  CAS  Google Scholar 

  12. For selected reviews on NHC organocatalysis, see: (a) Enders D, Niemeier O, Henseler A. Chem Rev, 2007, 107: 5606–5655

    Article  CAS  PubMed  Google Scholar 

  13. Biju AT, Kuhl N, Glorius F. Acc Chem Res, 2011, 44: 1182–1195

    Article  CAS  PubMed  Google Scholar 

  14. Bugaut X, Glorius F. Chem Soc Rev, 2012, 41: 3511–3522

    Article  CAS  PubMed  Google Scholar 

  15. Cohen DT, Scheidt KA. Chem Sci, 2012, 3: 53–57

    Article  CAS  PubMed  Google Scholar 

  16. Grossmann A, Enders D. Angew Chem Int Ed, 2012, 51: 314–325

    Article  CAS  Google Scholar 

  17. Ryan SJ, Candish L, Lupton DW. Chem Soc Rev, 2013, 42: 4906–4917

    Article  CAS  PubMed  Google Scholar 

  18. Connon SJ. Angew Chem Int Ed, 2014, 53: 1203–1205

    Article  CAS  Google Scholar 

  19. Hopkinson MN, Richter C, Schedler M, Glorius F. Nature, 2014, 510: 485–496

    Article  CAS  PubMed  Google Scholar 

  20. Mahatthananchai J, Bode JW. Acc Chem Res, 2014, 47: 696–707

    Article  CAS  PubMed  Google Scholar 

  21. Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem Rev, 2015, 115: 9307–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Menon RS, Biju AT, Nair V. Chem Soc Rev, 2015, 44: 5040–5052

    Article  CAS  PubMed  Google Scholar 

  23. Wang MH, Scheidt KA. Angew Chem Int Ed, 2016, 55: 14912–14922

    Article  CAS  Google Scholar 

  24. Zhang C, Hooper JF, Lupton DW. ACS Catal, 2017, 7: 2583–2596

    Article  CAS  Google Scholar 

  25. Murauski KJR, Jaworski AA, Scheidt KA. Chem Soc Rev, 2018, 47: 1773–1782

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Wang H, Jin Z, Chi YR. Chin J Chem, 2020, 38: 1167–1202

    Article  CAS  Google Scholar 

  27. Chow KYK, Bode JW. J Am Chem Soc, 2004, 126: 8126–8127

    Article  CAS  PubMed  Google Scholar 

  28. (a)_Sohn SS, Bode JW. Angew Chem Int Ed, 2006, 45: 6021–6024

    Article  CAS  Google Scholar 

  29. Bode JW, Sohn SS. J Am Chem Soc, 2007, 129: 13798–13799

    Article  CAS  PubMed  Google Scholar 

  30. Du D, Wang Z. Eur J Org Chem, 2008, 29: 4949–4954

    Article  Google Scholar 

  31. Du D, Li L, Wang Z. J Org Chem, 2009, 74: 4379–4382

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Du D, Ren J, Wang Z. Eur J Org Chem, 2011, 3: 614–618

    Article  Google Scholar 

  33. Li GQ, Dai LX, You SL. Org Lett, 2009, 11: 1623–1625

    Article  CAS  PubMed  Google Scholar 

  34. Prieto L, Sánchez-Díez E, Uria U, Reyes E, Carrillo L, Vicario JL. Adv Synth Catal, 2017, 359: 1678–1683

    Article  CAS  Google Scholar 

  35. Gao YY, Zhang CL, Dai L, Han YF, Ye S. Org Lett, 2021, 23: 1361–1366

    Article  CAS  PubMed  Google Scholar 

  36. Lv H, Mo J, Fang X, Chi YR. Org Lett, 2011, 13: 5366–5369

    Article  CAS  PubMed  Google Scholar 

  37. Li BS, Wang Y, Jin Z, Chi YR. Chem Sci, 2015, 6: 6008–6012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li BS, Wang Y, Jin Z, Zheng P, Ganguly R, Chi YR. Nat Commun, 2015, 6: 6207–6211

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Jiang T, Xu MH. J Am Chem Soc, 2013, 135: 971–974

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Gu S, Yan Q, Ding L, Chen FE. Green Synth Catal, 2020, 1: 12–25

    Article  Google Scholar 

  41. Dai L, Ye S. Org Lett, 2020, 22: 986–990

    Article  CAS  PubMed  Google Scholar 

  42. Breslow R. J Am Chem Soc, 1958, 80: 3719–3726

    Article  CAS  Google Scholar 

  43. Kerr MS, Read de Alaniz J, Rovis T. J Am Chem Soc, 2002, 124: 10298–10299

    Article  CAS  PubMed  Google Scholar 

  44. He M, Struble JR, Bode JW. J Am Chem Soc, 2006, 128: 8418–8420

    Article  CAS  PubMed  Google Scholar 

  45. Enders D, Balensiefer T. Acc Chem Res, 2004, 37: 534–541

    Article  CAS  PubMed  Google Scholar 

  46. DiRocco DA, Rovis T. J Am Chem Soc, 2012, 134: 8094–8097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. For determinations of the relative configurations of the diastereomers, see the Supporting Information online

  48. Xu J, Mou C, Zhu T, Song BA, Chi YR. Org Lett, 2014, 16: 3272–3275

    Article  CAS  PubMed  Google Scholar 

  49. Li Z, Li X, Cheng JP. J Org Chem, 2017, 82: 9675–9681

    Article  CAS  PubMed  Google Scholar 

  50. Niu Y, Wang N, Muñoz A, Xu J, Zeng H, Rovis T, Lee JK. J Am Chem Soc, 2017, 139: 14917–14930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Z, Wang F, Xue XS, Ji P. Org Lett, 2018, 20: 6041–6045

    Article  CAS  PubMed  Google Scholar 

  52. Huang R, Chen X, Mou C, Luo G, Li Y, Li X, Xue W, Jin Z, Chi YR. Org Lett, 2019, 21: 4340–4344

    Article  CAS  PubMed  Google Scholar 

  53. Smith MK, Tunge JA. Org Lett, 2017, 19: 5497–5500

    Article  CAS  PubMed  Google Scholar 

  54. Mao PF, Zhou LJ, Zheng AQ, Miao CB, Yang HT. Org Lett, 2019, 21: 3153–3157

    Article  CAS  PubMed  Google Scholar 

  55. Gómez JE, Guo W, Gaspa S, Kleij AW. Angew Chem Int Ed, 2017, 56: 15035–15038

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21772029, 21801051, 21961006, 22071036, 82360589, 81360589), The 10 Talent Plan (Shicengci) of Guizhou Province ([2016]5649), the Guizhou Province Returned Oversea Student Science and Technology Activity Program [(2014)-2], the Science and Technology Department of Guizhou Province ([2018]2802, [2019]1020), the Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University, Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province [Qianjiaohe KY (2020)004], the Guizhou Province First-Class Disciplines Project [(Yiliu Xueke Jianshe Xiangmu)-GNYL(2017)008], Guizhou University of Traditional Chinese Medicine (China), and Guizhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggui Robin Chi.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Xu, J., Pan, X. et al. Carbene-catalyzed activation of cyclopropylcarbaldehydes for mannich reaction and δ-lactam formation: remote enantioselecitvity control and dynamic kinetic asymmetric transformation. Sci. China Chem. 64, 985–990 (2021). https://doi.org/10.1007/s11426-021-9989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-9989-1

Keywords

Navigation