Skip to main content
Log in

Redox-active conjugated microporous polymers as electron-accepting organic pseudocapacitor electrode materials for flexible energy storage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Efficient energy storage devices, i.e. pseudocapacitors, are being intensively pursued to address the environmental and energy crises. Most high-performance pseudocapacitors are based on inorganic materials, while organic materials with broader synthetic tunability have attracted increasing interest. Despite recent progress, electron-deficient (n-type) organic pseudocapacitive materials for flexible energy storage are highly demanded yet remain largely unexplored. Here a novel set of n-type perylene diimide (PDI) based conjugated microporous polymers (CMPs), namely, CMP-1, CMP-2 and CMP-3, have been created to integrate excellent desirable characteristics as organic pseudocapacitor electrode materials for flexible energy storage. In light of electron-accepting redox-active sites, hierarchically porous structures, as well as amide-linked networks, the PDI-CMPs electrodes displayed n-type pseudocapacitive behaviors with high capacity (139–205 F g−1 at 0.5 A g−1), wide and negative biases (−1.0 to 0 V vs. Ag/AgCl), and long cycling stability. CMP-3 consisting of tetraphenylmethane three-dimensional (3D) building block and PDI units demonstrates not only higher capacitance but also better performance stability because of the higher specific surface area and faster diffusion kinetics as compared to its counterpart CMP-1. Asymmetric supercapacitors (SCs) based on CMP-3 and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT/PSS) exhibited wider potential window (1.8 V) and higher capacitance (17.4 mF cm−2) compared with symmetric SCs based on PEDOT/PSS electrodes. Notably, CMP-3 also demonstrates attractive potentials as anode for rechargeable Li-ion batteries. The study sheds light on the fundamental understanding of the key structural parameters that determine their electrochemical and transport properties, thus opening a new door for the rational design of efficient and stable n-type organic electrode materials for flexible energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang YZ, Wang Y, Cheng T, Lai WY, Pang H, Huang W. Chem Soc Rev, 2015, 44: 5181–5199

    Article  CAS  PubMed  Google Scholar 

  2. Zhang YZ, Wang Y, Cheng T, Yao LQ, Li X, Lai WY, Huang W. Chem Soc Rev, 2019, 48: 3229–3264

    Article  CAS  PubMed  Google Scholar 

  3. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W. Chem Soc Rev, 2017, 46: 6816–6854

    Article  CAS  PubMed  Google Scholar 

  4. Nagaraju G, Raju GSR, Ko YH, Yu JS. Nanoscale, 2016, 8: 812–825

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ. Adv Mater, 2011, 23: 2076–2081

    Article  CAS  PubMed  Google Scholar 

  6. Liu X, Liu CF, Lai WY, Huang W. Adv Mater Technol, 2020, 5: 2000154

    Article  CAS  Google Scholar 

  7. Liu YY, Li XC, Wang S, Cheng T, Yang H, Liu C, Gong Y, Lai WY, Huang W. Nat Commun, 2020, 11: 5561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim SK, Cho J, Moore JS, Park HS, Braun PV. Adv Funct Mater, 2016, 26: 903–910

    Article  CAS  Google Scholar 

  9. Li XC, Zhang Y, Wang CY, Wan Y, Lai WY, Pang H, Huang W. Chem Sci, 2017, 8: 2959–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Halder A, Ghosh M, Khayum M A, Bera S, Addicoat M, Sasmal HS, Karak S, Kurungot S, Banerjee R. J Am Chem Soc, 2018, 140: 10941–10945

    Article  CAS  PubMed  Google Scholar 

  11. Cheng T, Zhang YZ, Wang S, Chen YL, Gao SY, Wang F, Lai WY, Huang W. Adv Funct Mater, 2021, 31: 2101303

    Article  CAS  Google Scholar 

  12. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB. Chem Rev, 2018, 118: 9233–9280

    Article  CAS  PubMed  Google Scholar 

  13. Bryan AM, Santino LM, Lu Y, Acharya S, D’Arcy JM. Chem Mater, 2016, 28: 5989–5998

    Article  CAS  Google Scholar 

  14. Mastragostino M, Arbizzani C, Soavi F. J Power Sources, 2001, 97–98: 812–815

    Article  Google Scholar 

  15. Vangari M, Pryor T, Jiang L. J Energy Eng, 2013, 139: 72–79

    Article  Google Scholar 

  16. Qin L, Ma W, Hanif M, Jiang J, Xie Z, Ma Y. Macromolecules, 2017, 50: 3565–3572

    Article  CAS  Google Scholar 

  17. Wang H, Jiang N, Zhang Q, Xie G, Tang N, Liu L, Xie Z. Macromolecules, 2021, 54: 3469–3477

    Article  CAS  Google Scholar 

  18. Miltenburg MB, An SY, Obhi NK, Grignon E, McAllister BT, Seferos DS. ACS Appl Polym Mater, 2020, 2: 5574–5580

    Article  CAS  Google Scholar 

  19. You CC, Espindola P, Hippius C, Heinze J, Würthner F. Adv Funct Mater, 2007, 17: 3764–3772

    Article  CAS  Google Scholar 

  20. Liu CF, Liu X, Lai WY, Huang W. Adv Mater, 2018, 30: 1802466

    Article  Google Scholar 

  21. An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690

    Article  CAS  PubMed  Google Scholar 

  22. Wen X, Nowak-Król A, Nagler O, Kraus F, Zhu N, Zheng N, Müller M, Schmidt D, Xie Z, Würthner F. Angew Chem Int Ed, 2019, 58: 13051–13055

    Article  CAS  Google Scholar 

  23. Volkov AV, Sun H, Kroon R, Ruoko TP, Che C, Edberg J, Müller C, Fabiano S, Crispin X. ACS Appl Energy Mater, 2019, 2: 5350–5355

    Article  CAS  Google Scholar 

  24. Guo X, Facchetti A, Marks TJ. Chem Rev, 2014, 114: 8943–9021

    Article  CAS  PubMed  Google Scholar 

  25. Milton M, Cheng Q, Yang Y, Nuckolls C, Hernández Sánchez R, Sisto TJ. Nano Lett, 2017, 17: 7859–7863

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh I, Ghosh T, Bardagi JI, König B. Science, 2014, 346: 725–728

    Article  CAS  PubMed  Google Scholar 

  27. Ma W, Qin L, Gao Y, Zhang W, Xie Z, Yang B, Liu L, Ma Y. Chem Commun, 2016, 52: 13600–13603

    Article  CAS  Google Scholar 

  28. Peurifoy SR, Russell JC, Sisto TJ, Yang Y, Roy X, Nuckolls C. J Am Chem Soc, 2018, 140: 10960–10964

    Article  CAS  PubMed  Google Scholar 

  29. Russell JC, Posey VA, Gray J, May R, Reed DA, Zhang H, Marbella LE, Steigerwald ML, Yang Y, Roy X, Nuckolls C, Peurifoy SR. Nat Mater, 2021, 20: 1136–1141

    Article  CAS  PubMed  Google Scholar 

  30. Han X, Xiao G, Wang Y, Chen X, Duan G, Wu Y, Gong X, Wang H. J Mater Chem A, 2020, 8: 23059–23095

    Article  CAS  Google Scholar 

  31. Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P. Chem Soc Rev, 2018, 47: 2065–2129

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Liu CF, Xu S, Cheng T, Wang S, Lai WY, Huang W. Chem Soc Rev, 2022, 51: 3181–3225

    Article  CAS  PubMed  Google Scholar 

  33. Vilela F, Zhang K, Antonietti M. Energy Environ Sci, 2012, 5: 7819–7832

    Article  CAS  Google Scholar 

  34. Cheng T, Zhang YZ, Zhang JD, Lai WY, Huang W. J Mater Chem A, 2016, 4: 10493–10499

    Article  CAS  Google Scholar 

  35. Cheng T, Zhang YZ, Yi JP, Yang L, Zhang JD, Lai WY, Huang W. J Mater Chem A, 2016, 4: 13754–13763

    Article  CAS  Google Scholar 

  36. Lee JSM, Wu TH, Alston BM, Briggs ME, Hasell T, Hu CC, Cooper AI. J Mater Chem A, 2016, 4: 7665–7673

    Article  CAS  Google Scholar 

  37. Ding X, Han BH. Angew Chem Int Ed, 2015, 54: 6536–6539

    Article  CAS  Google Scholar 

  38. Zha Z, Xu L, Wang Z, Li X, Pan Q, Hu P, Lei S. ACS Appl Mater Interfaces, 2015, 7: 17837–17843

    Article  CAS  PubMed  Google Scholar 

  39. Wood KN, O’Hayre R, Pylypenko S. Energy Environ Sci, 2014, 7: 1212–1249

    Article  CAS  Google Scholar 

  40. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B. Nat Mater, 2013, 12: 518–522

    Article  CAS  PubMed  Google Scholar 

  41. Peurifoy SR, Castro E, Liu F, Zhu XY, Ng F, Jockusch S, Steigerwald ML, Echegoyen L, Nuckolls C, Sisto TJ. J Am Chem Soc, 2018, 140: 9341–9345

    Article  CAS  PubMed  Google Scholar 

  42. Yu M, Chandrasekhar N, Raghupathy RKM, Ly KH, Zhang H, Dmitrieva E, Liang C, Lu X, Kühne TD, Mirhosseini H, Weidinger IM, Feng X. J Am Chem Soc, 2020, 142: 19570–19578

    Article  CAS  PubMed  Google Scholar 

  43. Lu Y, Cai Y, Zhang Q, Chen J. Adv Mater, 2022, 34: 2104150

    Article  CAS  Google Scholar 

  44. Banda H, Damien D, Nagarajan K, Raj A, Hariharan M, Shaijumon MM. Adv Energy Mater, 2017, 7: 1701316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yong Lai.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1320_MOESM1_ESM.pdf

Redox-Active Conjugated Microporous Polymers as Electron-Accepting Organic Pseudocapacitor Electrode Materials for Flexible Energy Storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Sun, G., Gong, Y. et al. Redox-active conjugated microporous polymers as electron-accepting organic pseudocapacitor electrode materials for flexible energy storage. Sci. China Chem. 65, 1767–1774 (2022). https://doi.org/10.1007/s11426-022-1320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1320-3

Keywords

Navigation