Skip to main content
Log in

Nitrogen-skinned carbon nanocone enables non-dynamic electrochemistry of individual metal particles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nano-impact electrochemistry is an efficient way to probe the physical and chemical properties of individual particles. Unfortunately, limited by the weak adsorption between particles and a microelectrode (ME), the particle collision events evolve randomly to be elastic or inelastic. These events occur intermittently to produce unmarked transient signal sets that seriously interfere with single particle measurement. Here, we report a nitrogen-skinned carbon nanocone electrode (NS-CNCE) to enhance its adsorption capacity greatly towards metal particles and thus realize non-dynamic (i.e., inelastic impacts) single particle analysis. The surface of NS-CNCEs characteristic of excellent adhesion, smoothness, and conductivity can effectively capture the landing metal particles to form a stable contact for efficient electronic communication. Using superior NS-CNCEs, we investigated electrochemical oxidation of Ag (or Au) particles and electrocatalytic amplification of Pt particles, respectively, under non-dynamic electrochemistry. The determined particle size is highly consistent with the physical characterization. Statistical analysis of transient signals confirms the strong adhesion of NS-CNCEs to metal particles, which is also in line with the prediction of a particle-electrode adsorption energy model. The proposed strategy has effectively solved the major challenge of general single metal particle collision analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou X, Andoy NM, Liu G, Choudhary E, Han KS, Shen H, Chen P. Nat Nanotech, 2012, 7: 237–241

    Article  CAS  Google Scholar 

  2. Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, Li J, Tao N. Nat Nanotech, 2012, 7: 668–672

    Article  CAS  Google Scholar 

  3. Phan NTN, Li X, Ewing AG. Nat Rev Chem, 2017, 1: 0048

    Article  CAS  Google Scholar 

  4. Kleijn SEF, Lai SCS, Koper MTM, Unwin PR. Angew Chem Int Ed, 2014, 53: 3558–3586

    Article  CAS  Google Scholar 

  5. Baker LA. J Am Chem Soc, 2018, 140: 15549–15559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ren H, Edwards MA. Curr Opin Electrochem, 2021, 25: 100632

    Article  CAS  PubMed  Google Scholar 

  7. Lu SM, Peng YY, Ying YL, Long YT. Anal Chem, 2020, 92: 5621–5644

    Article  CAS  PubMed  Google Scholar 

  8. Lu SM, Chen JF, Peng YY, Ma W, Ma H, Wang HF, Hu P, Long YT. J Am Chem Soc, 2021, 143: 12428–12432

    Article  CAS  PubMed  Google Scholar 

  9. Ma H, Chen JF, Wang HF, Hu PJ, Ma W, Long YT. Nat Commun, 2020, 11: 2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou YG, Rees NV, Compton RG. Angew Chem Int Ed, 2011, 50: 4219–4221

    Article  CAS  Google Scholar 

  11. Robinson DA, Liu Y, Edwards MA, Vitti NJ, Oja SM, Zhang B, White HS. J Am Chem Soc, 2017, 139: 16923–16931

    Article  CAS  PubMed  Google Scholar 

  12. Oja SM, Robinson DA, Vitti NJ, Edwards MA, Liu Y, White HS, Zhang B. J Am Chem Soc, 2017, 139: 708–718

    Article  CAS  PubMed  Google Scholar 

  13. Ustarroz J, Kang M, Bullions E, Unwin PR. Chem Sci, 2017, 8: 1841–1853

    Article  CAS  PubMed  Google Scholar 

  14. Ma W, Ma H, Chen JF, Peng YY, Yang ZY, Wang HF, Ying YL, Tian H, Long YT. Chem Sci, 2017, 8: 1854–1861

    Article  CAS  PubMed  Google Scholar 

  15. Xiao X, Bard AJ. J Am Chem Soc, 2007, 129: 9610–9612

    Article  CAS  PubMed  Google Scholar 

  16. Xiao X, Fan FRF, Zhou J, Bard AJ. J Am Chem Soc, 2008, 130: 16669–16677

    Article  CAS  PubMed  Google Scholar 

  17. Quinn BM, Van’t Hof PG, Lemay SG. J Am Chem Soc, 2004, 126: 8360–8361

    Article  CAS  PubMed  Google Scholar 

  18. Deinhammer RS, Ho M, Anderegg JW, Porter MD. Langmuir, 1994, 10: 1306–1313

    Article  CAS  Google Scholar 

  19. Aiyappa HB, Wilde P, Quast T, Masa J, Andronescu C, Chen YT, Muhler M, Fischer RA, Schuhmann W. Angew Chem Int Ed, 2019, 58: 8927–8931

    Article  CAS  Google Scholar 

  20. Clausmeyer J, Wilde P, Löffler T, Ventosa E, Tschulik K, Schuhmann W. Electrochem Commun, 2016, 73: 67–70

    Article  CAS  Google Scholar 

  21. Wilde P, Barwe S, Andronescu C, Schuhmann W, Ventosa E. Nano Res, 2018, 11: 6034–6044

    Article  CAS  Google Scholar 

  22. Löffler T, Meyer H, Savan A, Wilde P, Garzón Manjón A, Chen YT, Ventosa E, Scheu C, Ludwig A, Schuhmann W. Adv Energy Mater, 2018, 8: 1802269

    Article  Google Scholar 

  23. Li Z, Chen Y, Ji S, Tang Y, Chen W, Li A, Zhao J, Xiong Y, Wu Y, Gong Y, Yao T, Liu W, Zheng L, Dong J, Wang Y, Zhuang Z, Xing W, He CT, Peng C, Cheong WC, Li Q, Zhang M, Chen Z, Fu N, Gao X, Zhu W, Wan J, Zhang J, Gu L, Wei S, Hu P, Luo J, Li J, Chen C, Peng Q, Duan X, Huang Y, Chen XM, Wang D, Li Y. Nat Chem, 2020, 12: 764–772

    Article  PubMed  Google Scholar 

  24. Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE. Angew Chem Int Ed, 2011, 50: 9638–9642

    Article  CAS  Google Scholar 

  25. Barfidokht A, Ciampi S, Luais E, Darwish N, Gooding JJ. Anal Chem, 2013, 85: 1073–1080

    Article  CAS  PubMed  Google Scholar 

  26. Mattiuzzi A, Jabin I, Mangeney C, Roux C, Reinaud O, Santos L, Bergamini JF, Hapiot P, Lagrost C. Nat Commun, 2012, 3: 1–8

    Article  Google Scholar 

  27. Liu X, Dai L. Nat Rev Mater, 2016, 1: 16064

    Article  CAS  Google Scholar 

  28. Zhang J, Xia Z, Dai L. Sci Adv, 2015, 1: e1500564

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351: 361–365

    Article  CAS  PubMed  Google Scholar 

  30. Chen W, Liu J, Wang Y, Jiang C, Yu B, Sun Z, Lu L. Angew Chem, 2019, 131: 6356–6360

    Article  Google Scholar 

  31. Nesselberger M, Roefzaad M, Fayçal Hamou R, Ulrich Biedermann P, Schweinberger FF, Kunz S, Schloegl K, Wiberg GKH, Ashton S, Heiz U, Mayrhofer KJJ, Arenz M. Nat Mater, 2013, 12: 919–924

    Article  CAS  PubMed  Google Scholar 

  32. Zhang LL, Zhao X, Ji H, Stoller MD, Lai L, Murali S, Mcdonnell S, Cleveger B, Wallace RM, Ruoff RS. Energy Environ Sci, 2012, 5: 9618–9625

    Article  CAS  Google Scholar 

  33. Bentley CL, Kang M, Unwin PR. J Am Chem Soc, 2016, 138: 12755–12758

    Article  CAS  PubMed  Google Scholar 

  34. Ward Jones SE, Campbell FW, Baron R, Xiao L, Compton RG. J Phys Chem C, 2008, 112: 17820–17827

    Article  CAS  Google Scholar 

  35. Toh HS, Batchelor-McAuley C, Tschulik K, Uhlemann M, Crossley A, Compton RG. Nanoscale, 2013, 5: 4884–4893

    Article  CAS  PubMed  Google Scholar 

  36. Ellison J, Batchelor-McAuley C, Tschulik K, Compton RG. Sens Actuat B-Chem, 2014, 200: 47–52

    Article  CAS  Google Scholar 

  37. Ortiz-Ledón CA, Zoski CG. Anal Chem, 2018, 90: 12616–12624

    Article  PubMed  Google Scholar 

  38. Defnet PA, Zhang B. J Am Chem Soc, 2021, 143: 16154–16162

    Article  CAS  PubMed  Google Scholar 

  39. Hammer B, Hansen LB, Nørskov JK. Phys Rev B, 1999, 59: 7413–7421

    Article  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  41. Holt LR, Plowman BJ, Young NP, Tschulik K, Compton RG. Angew Chem Int Ed, 2016, 55: 397–400

    Article  CAS  Google Scholar 

  42. Plowman BJ, Young NP, Batchelor-McAuley C, Compton RG. Angew Chem, 2016, 128: 7116–7119

    Article  Google Scholar 

  43. Wei W, Yuan T, Jiang W, Gao J, Chen HY, Wang W. J Am Chem Soc, 2020, 142: 14307–14313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21721003, 21635007), the Instrument Developing Project of the Chinese Academy of Sciences (YJKYYQ20210003), and the Natural Science Foundation of Jilin Province (20210101402JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zhou or Lehui Lu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xu, J., Gao, H. et al. Nitrogen-skinned carbon nanocone enables non-dynamic electrochemistry of individual metal particles. Sci. China Chem. 65, 2031–2037 (2022). https://doi.org/10.1007/s11426-022-1305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1305-3

Keywords

Navigation