Skip to main content
Log in

Ligand accommodation causes altered reactivity of silver clusters with iodomethane: superatomic stability of Ag9I2+ in mimicking XeF2

  • Article
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Exploring metal cluster reactivity with alkyl halides enables to understand the related chemical mechanism of metal surfaces in terms of active sites. Here we report a study of Agn+(n = 1–27) clusters reacting with iodomethane by a flow tube apparatus in tandem with a customized triple quadrupole mass spectrometer. Strong even/odd alternation of the Agn+ is observed in their reactions with CH3I, where silver clusters with even-number, Ag2n+, find favorable products of Ag2nI1,3+ series, while the Ag2n−1+ clusters form Ag2n−1I2,4+ products. Interestingly, Ag9+ shows up with prominent mass abundance but allows for the formation of Ag9I2+, which finds an echo with the formation of Ag10I3+. We illustrate the enhanced stability of Ag9I2+ and Ag10I3+ by showing their significantly enlarged highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps and balanced charge distribution compared with the bare metal clusters, respectively. Also elucidated, is the superatomic nature of these bare and iodinated silver clusters, especially Ag9I2+ which mimics the rare-gas compound XeF2. This study expands a vivid example of special and general superatoms, and enriches the general knowledge on how a ligand stabilizes a metal cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reber AC, Khanna SN. Acc Chem Res, 2017, 50: 255–263

    Article  CAS  PubMed  Google Scholar 

  2. Jena P, Sun Q. Chem Rev, 2018, 118: 5755–5870

    Article  CAS  PubMed  Google Scholar 

  3. Luo Z, Castleman AW. Acc Chem Res, 2014, 47: 2931–2940

    Article  CAS  PubMed  Google Scholar 

  4. Bergeron DE, Castleman Jr. AW, Morisato T, Khanna SN. Science, 2004, 304: 84–87

    Article  CAS  PubMed  Google Scholar 

  5. Bergeron DE, Roach PJ, Castleman Jr. AW, Jones NO, Khanna SN. Science, 2005, 307: 231–235

    Article  CAS  PubMed  Google Scholar 

  6. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H. Proc Natl Acad Sci USA, 2008, 105: 9157–9162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sharma S, Chakrahari KK, Saillard JY, Liu CW. Acc Chem Res, 2018, 51: 2475–2483

    Article  CAS  PubMed  Google Scholar 

  8. Doud EA, Voevodin A, Hochuli TJ, Champsaur AM, Nuckolls C, Roy X. Nat Rev Mater, 2020, 5: 371–387

    Article  Google Scholar 

  9. Hirai H, Ito S, Takano S, Koyasu K, Tsukuda T. Chem Sci, 2020, 11: 12233–12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamamoto K, Imaoka T. Acc Chem Res, 2014, 47: 1127–1136

    Article  CAS  PubMed  Google Scholar 

  11. Tsunoyama H, Shibuta M, Nakaya M, Eguchi T, Nakajima A. Acc Chem Res, 2018, 51: 1735–1745

    Article  CAS  PubMed  Google Scholar 

  12. Abreu MB, Powell C, Reber AC, Khanna SN. J Am Chem Soc, 2012, 134: 20507–20512

    Article  CAS  PubMed  Google Scholar 

  13. Luo Z, Reber AC, Jia M, Blades WH, Khanna SN, Castleman AW. Chem Sci, 2016, 7: 3067–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shichibu Y, Zhang M, Kamei Y, Konishi K. Am Chem Soc, 2014, 136: 12892–12895

    Article  CAS  Google Scholar 

  15. Rajský T, Urban M. J Phys Chem A, 2016, 120: 3938–3949

    Article  PubMed  CAS  Google Scholar 

  16. Narouz MR, Osten KM, Unsworth PJ, Man RWY, Salorinne K, Takano S, Tomihara R, Kaappa S, Malola S, Dinh CT, Padmos JD, Ayoo K, Garrett PJ, Nambo M, Horton JH, Sargent EH, Häkkinen H, Tsukuda T, Crudden CM. Nat Chem, 2019, 11: 419–425

    Article  CAS  PubMed  Google Scholar 

  17. Shafai G, Hong S, Bertino M, Rahman TS. J Phys Chem C, 2009, 113: 12072–12078

    Article  CAS  Google Scholar 

  18. Narouz MR, Takano S, Lummis PA, Levchenko TI, Nazemi A, Kaappa S, Malola S, Yousefalizadeh G, Calhoun LA, Stamplecoskie KG, Häkkinen H, Tsukuda T, Crudden CM. J Am Chem Soc, 2019, 141: 14997–15002

    Article  CAS  PubMed  Google Scholar 

  19. Muñoz-Castro A, King RB. J Phys Chem C, 2017, 121: 5848–5853

    Article  CAS  Google Scholar 

  20. Wan XK, Lin ZW, Wang QM. J Am Chem Soc, 2012, 134: 14750–14752

    Article  CAS  PubMed  Google Scholar 

  21. Bi Y, Wang Z, Liu T, Sun D, Godbert N, Li H, Hao J, Xin X. ACS Nano, 2021, 15: 15910–15919

    Article  CAS  PubMed  Google Scholar 

  22. Yang M, Wu H, Huang B, Luo Z. J Phys Chem A, 2019, 123: 6921–6926

    Article  CAS  PubMed  Google Scholar 

  23. Liu CW, Shang IJ, Fu RJ, Liaw BJ, Wang JC, Chang IJ. Inorg Chem, 2006, 45: 2335–2340

    Article  CAS  PubMed  Google Scholar 

  24. McKee ML, Samokhvalov A. J Phys Chem A, 2017, 121: 5018–5028

    Article  CAS  PubMed  Google Scholar 

  25. Chakrahari KK, Liao JH, Kahlal S, Liu YC, Chiang MH, Saillard JY, Liu CW. Angew Chem Int Ed, 2016, 55: 14704–14708

    Article  CAS  Google Scholar 

  26. Iwasa T, Sato T, Takagi M, Gao M, Lyalin A, Kobayashi M, Shimizu KI, Maeda S, Taketsugu T. J Phys Chem A, 2019, 123: 210–217

    Article  CAS  PubMed  Google Scholar 

  27. Cook AW, Hrobárik P, Damon PL, Wu G, Hayton TW. Inorg Chem, 2020, 59: 1471–1480

    Article  CAS  PubMed  Google Scholar 

  28. Nigam S, Majumder C. J Phys Chem C, 2012, 116: 2863–2871

    Article  CAS  Google Scholar 

  29. Khanna SN, Reber AC, Bista D, Sengupta T, Lambert R. J Chem Phys, 2021, 155: 120901

    Article  CAS  PubMed  Google Scholar 

  30. Yin B, Luo Z. Coord Chem Rev, 2021, 429: 213643

    Article  CAS  Google Scholar 

  31. Liu Z, Wu X, Zhu Y, Wang R, Yu F, Wang Z. J Phys Chem Lett, 2021, 12: 11766–11771

    Article  CAS  PubMed  Google Scholar 

  32. Tan H, Fan WY. Chem Phys Lett, 2005, 406: 289–293

    Article  CAS  Google Scholar 

  33. Wu H, Luo Z. Sci China Chem, 2018, 61: 1619–1623

    Article  CAS  Google Scholar 

  34. Andrew GN, Wu H, Anumula R, Luo Z. Chem Asian J, 2020, 15: 4077–4081

    Article  CAS  PubMed  Google Scholar 

  35. Li B, Liao JH, Li YJ, Liu CW. CrystEngComm, 2013, 15: 6140

    Article  CAS  Google Scholar 

  36. Pitzschke D, Curda J, Jansen M. Z anorg allg Chem, 2009, 635: 926–930

    Article  CAS  Google Scholar 

  37. Pitzschke D, Curda J, Jansen M. Z anorg allg Chem, 2009, 635: 1106–1109

    Article  CAS  Google Scholar 

  38. Yang X, Goldsmith CF, Tranter RS. J Phys Chem A, 2009, 113: 8307–8317

    Article  CAS  PubMed  Google Scholar 

  39. Yang M, Wu H, Huang B, Luo Z, Hansen K. J Phys Chem A, 2020, 124: 2505–2512

    Article  CAS  PubMed  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas; Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Wallingford: Gaussian, Inc., 2009

  41. Humphrey W, Dalke A, Schulten K. J Mol Graphics, 1996, 14: 33–38

    Article  CAS  Google Scholar 

  42. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  CAS  Google Scholar 

  43. Velde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T. J Comput Chem, 2001, 22: 931–967

    Article  Google Scholar 

  44. http://www.scm.com/, accessed on Oct 24

  45. Bergeron DE, Roach PJ, Castleman Jr. AW, Jones NO, Reveles JU, Khanna SN. J Am Chem Soc, 2005, 127: 16048–16053

    Article  CAS  PubMed  Google Scholar 

  46. Muramatsu S, Koyasu K, Tsukuda T. ACS Omega, 2018, 3: 16874–16881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin B, Du Q, Geng L, Zhang H, Luo Z, Zhou S, Zhao J. CCS Chem, 2021, 3: 219–229

    Article  CAS  Google Scholar 

  48. Luo Z, Gamboa GU, Smith JC, Reber AC, Reveles JU, Khanna SN, Castleman Jr. AW. J Am Chem Soc, 2012, 134: 18973–18978

    Article  CAS  PubMed  Google Scholar 

  49. Ma J, Cao X, Xing X, Wang X, Parks JH. Phys Chem Chem Phys, 2016, 18: 743–748

    Article  CAS  PubMed  Google Scholar 

  50. Hagen J, Socaciu LD, Le Roux J, Popolan D, Bernhardt TM, Wöste L, Mitrić R, Noack H, Bonacić-Koutecký V. J Am Chem Soc, 2004, 126: 3442–3443

    Article  CAS  PubMed  Google Scholar 

  51. He MM, Hu J, Wu CX, Zhi Y, Tian SX. J Phys Chem A, 2020, 124: 3358–3363

    Article  CAS  PubMed  Google Scholar 

  52. Bederski K. Vacuum, 2003, 70: 373–379

    Article  CAS  Google Scholar 

  53. Gamboa GU, Reber AC, Khanna SN. New J Chem, 2013, 37: 3928–3935

    Article  CAS  Google Scholar 

  54. Muramatsu S, Tsukuda T. Chem Asian J, 2019, 14: 3763–3772

    Article  CAS  PubMed  Google Scholar 

  55. Rijs NJ, Yoshikai N, Nakamura E, O’Hair RAJ. J Am Chem Soc, 2012, 134: 2569–2580

    Article  CAS  PubMed  Google Scholar 

  56. Muramatsu S, Wu X, Chen M, Zhou M, Tsukuda T. J Phys Chem A, 2017, 121: 8408–8413

    Article  CAS  PubMed  Google Scholar 

  57. Ard SG, Shuman NS, Martinez Jr. O, Keyes NR, Viggiano AA, Guo H, Troe J. J Phys Chem A, 2017, 121: 4058–4068

    Article  CAS  PubMed  Google Scholar 

  58. Braïda B, Hiberty PC. Nat Chem, 2013, 5: 417–422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2020YFA0714602), the National Natural Science Foundation of China (21722308, 22003072), and CAS Instrument Development Project (Y5294512C1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixun Luo.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

11426_2022_1297_MOESM1_ESM.pdf

Ligand Accommodation Causes Altered Reactivity of Silver Clusters with Iodomethane: Superatomic Stability of Ag9I2+ in Mimicking XeF2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Yang, M., Huang, B. et al. Ligand accommodation causes altered reactivity of silver clusters with iodomethane: superatomic stability of Ag9I2+ in mimicking XeF2. Sci. China Chem. 65, 1594–1600 (2022). https://doi.org/10.1007/s11426-022-1297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1297-8

Navigation