Skip to main content
Log in

Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension

  • Article
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

The central unit (benzo[c][1,2,5]thiadiazole) in Y6 series of molecules plays a determining role in their unique intermolecular packing for a three-dimensionally (3D) network, largely endowing their organic solar cells (OSCs) with so far the best power conversion efficiencies (PCEs) and also largely suppressed energy losses (Eloss). Despite its vital role in molecular packing, very few explorations for central unit have been conducted due to possibly the constructing challenge of central heterocyclic units. Herein, a highly efficient acceptor-donor-acceptor (A-D-A) type electron acceptor, CH17, has been designed and constructed, featured with a prominent π extension in both directions of the central and end units with respect to {bfY6} series. Such a multiple and much enhanced conjugation extension in CH17 enables a much more effective and compact 3D molecular packing compared with that of Y6 supported by X-ray single crystal and other analysis, mainly caused by a newly observed distinctive dual “end unit to central unit” packing mode. This much favorable molecular packing, also kept in its blends with donor materials, leads a larger electron and hole transfer integrals and hence much improved charge transport, and reduced energetic disorders in CH17 blends. More importantly, the observed upshifted charge transfer (CT) state of CH17 blends compared with that of Y6, due to its increased molecular conjugation extension in both directions, further enhances the hybridization between its CT and local exciton (LE) states, resulting in higher luminescence efficiency, much suppressed non-radiative recombination loss and smaller Eloss with respect to that of Y6. Consequently, an excellent PCE of 17.84% is achieved with PM6 as the donor in a binary device compared with a PCE of 16.27% for the controlled Y6 device. Furthermore, a further improved PCE of 18.13% is achieved by CH17-based ternary single-junction OSCs along with a markedly reduced Eloss of 0.49 eV and larger open-circuit voltage (Voc) of 0.89 V, compared with that (16.27% of PCE, 0.85 V of Voc, and 0.53 eV of Eloss) of the control device using Y6. This significantly improved photovoltaic performance caused by molecular multiple conjugation extension, especially through the largely unexplored central unit, indicates that there is still much room to further enhance OSC performance by addressing the most important issue for OSC, i.e, the smaller Voc caused by larger Eloss, through engineering molecular packing by designing/tuning molecule more dedicatedly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Gillett AJ, Privitera A, Dilmurat R, Karki A, Qian D, Pershin A, Londi G, Myers WK, Lee J, Yuan J, Ko SJ, Riede MK, Gao F, Bazan GC, Rao A, Nguyen TQ, Beljonne D, Friend RH. Nature, 2021, 597: 666–671

    Article  CAS  PubMed  Google Scholar 

  2. Song W, Liu Y, Fanady B, Han Y, Xie L, Chen Z, Yu K, Peng X, Zhang X, Ge Z. Nano Energy, 2021, 86: 106044

    Article  CAS  Google Scholar 

  3. Hu Z, Wang J, Ma X, Gao J, Xu C, Yang K, Wang Z, Zhang J, Zhang F. Nano Energy, 2020, 78: 105376

    Article  CAS  Google Scholar 

  4. Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y. J Am Chem Soc, 2020, 142: 1465–1474

    Article  CAS  PubMed  Google Scholar 

  5. Jing J, Dong S, Zhang K, Xie B, Zhang J, Song Y, Huang F. Nano Energy, 2022, 93: 106814

    Article  CAS  Google Scholar 

  6. Chen Y, Wan X, Long G. Acc Chem Res, 2013, 46: 2645–2655

    Article  CAS  PubMed  Google Scholar 

  7. Wan X, Li C, Zhang M, Chen Y. Chem Soc Rev, 2020, 49: 2828–2842

    Article  CAS  PubMed  Google Scholar 

  8. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: 2102420

    Article  CAS  Google Scholar 

  9. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  10. Bao S, Yang H, Fan H, Zhang J, Wei Z, Cui C, Li Y. Adv Mater, 2021, 33: 2105301

    Article  CAS  Google Scholar 

  11. Jena AK, Kulkarni A, Miyasaka T. Chem Rev, 2019, 119: 3036–3103

    Article  CAS  PubMed  Google Scholar 

  12. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K. Nat Energy, 2017, 2: 17032

    Article  CAS  Google Scholar 

  13. Wu J, Cha H, Du T, Dong Y, Xu W, Lin CT, Durrant JR. Adv Mater, 2022, 34: 2101833

    Article  CAS  Google Scholar 

  14. Chen S, Tsang SW, Lai TH, Reynolds JR, So F. Adv Mater, 2014, 26: 6125–6131

    Article  CAS  PubMed  Google Scholar 

  15. Liu H, Li M, Wu H, Wang J, Ma Z, Tang Z. J Mater Chem A, 2021, 9: 19770–19777

    Article  CAS  Google Scholar 

  16. Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi HW, Lee J, Bae JH, Kwak SK, Kim DS, Yang C. Science, 2020, 369: 1615–1620

    Article  CAS  PubMed  Google Scholar 

  17. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  18. Liu S, Yuan J, Deng W, Luo M, Xie Y, Liang Q, Zou Y, He Z, Wu H, Cao Y. Nat Photonics, 2020, 14: 300–305

    Article  CAS  Google Scholar 

  19. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  20. An N, Cai Y, Wu H, Tang A, Zhang K, Hao X, Ma Z, Guo Q, Ryu HS, Woo HY, Sun Y, Zhou E. Adv Mater, 2020, 32: 2002122

    Article  CAS  Google Scholar 

  21. Zhang G, Chen XK, Xiao J, Chow PCY, Ren M, Kupgan G, Jiao X, Chan CCS, Du X, Xia R, Chen Z, Yuan J, Zhang Y, Zhang S, Liu Y, Zou Y, Yan H, Wong KS, Coropceanu V, Li N, Brabec CJ, Bredas JL, Yip HL, Cao Y. Nat Commun, 2020, 11: 3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen XK, Qian D, Wang Y, Kirchartz T, Tress W, Yao H, Yuan J, Hülsbeck M, Zhang M, Zou Y, Sun Y, Li Y, Hou J, Inganäs O, Coropceanu V, Bredas JL, Gao F. Nat Energy, 2021, 6: 799–806

    Article  CAS  Google Scholar 

  23. Qian D, Zheng Z, Yao H, Tress W, Hopper TR, Chen S, Li S, Liu J, Chen S, Zhang J, Liu XK, Gao B, Ouyang L, Jin Y, Pozina G, Buyanova IA, Chen WM, Inganäs O, Coropceanu V, Bredas JL, Yan H, Hou J, Zhang F, Bakulin AA, Gao F. Nat Mater, 2018, 17: 703–709

    Article  CAS  PubMed  Google Scholar 

  24. Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209

    Article  Google Scholar 

  25. Gao W, Zhang M, Liu T, Ming R, An Q, Wu K, Xie D, Luo Z, Zhong C, Liu F, Zhang F, Yan H, Yang C. Adv Mater, 2018, 30: 1800052

    Article  Google Scholar 

  26. Huang H, Guo Q, Feng S, Zhang C’, Bi Z, Xue W, Yang J, Song J, Li C, Xu X, Tang Z, Ma W, Bo Z. Nat Commun, 2019, 10: 3038

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  28. Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234

    Article  CAS  Google Scholar 

  29. Guo X, Fan Q, Wu J, Li G, Peng Z, Su W, Lin J, Hou L, Qin Y, Ade H, Ye L, Zhang M, Li Y. Angew Chem Int Ed, 2021, 60: 2322–2329

    Article  CAS  Google Scholar 

  30. Wang R, Yuan J, Wang R, Han G, Huang T, Huang W, Xue J, Wang HC, Zhang C, Zhu C, Cheng P, Meng D, Yi Y, Wei KH, Zou Y, Yang Y. Adv Mater, 2019, 31: 1904215

    Article  CAS  Google Scholar 

  31. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  32. Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045–3049

    Article  CAS  Google Scholar 

  33. Ke X, Meng L, Wan X, Li M, Sun Y, Guo Z, Wu S, Zhang H, Li C, Chen Y. J Mater Chem A, 2020, 8: 9726–9732

    Article  CAS  Google Scholar 

  34. Qiu N, Zhang H, Wan X, Li C, Ke X, Feng H, Kan B, Zhang H, Zhang Q, Lu Y, Chen Y. Adv Mater, 2017, 29: 1604964

    Article  Google Scholar 

  35. Zhu W, Spencer AP, Mukherjee S, Alzola JM, Sangwan VK, Amsterdam SH, Swick SM, Jones LO, Heiber MC, Herzing AA, Li G, Stern CL, DeLongchamp DM, Kohlstedt KL, Hersam MC, Schatz GC, Wasielewski MR, Chen LX, Facchetti A, Marks TJ. J Am Chem Soc, 2020, 142: 14532–14547

    Article  CAS  PubMed  Google Scholar 

  36. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fan B, Lin F, Oh J, Fu H, Gao W, Fan Q, Zhu Z, Li WJ, Li N, Ying L, Huang F, Yang C, Jen AK. Adv Energy Mater, 2021, 11: 2101768

    Article  CAS  Google Scholar 

  38. Li G, Zhang X, Jones LO, Alzola JM, Mukherjee S, Feng LW, Zhu W, Stern CL, Huang W, Yu J, Sangwan VK, DeLongchamp DM, Kohlstedt KL, Wasielewski MR, Hersam MC, Schatz GC, Facchetti A, Marks TJ. J Am Chem Soc, 2021, 143: 6123–6139

    Article  CAS  PubMed  Google Scholar 

  39. Li S, Li CZ, Shi M, Chen H. ACS Energy Lett, 2020, 5: 1554–1567

    Article  CAS  Google Scholar 

  40. Li S, Zhan L, Yao N, Xia X, Chen Z, Yang W, He C, Zuo L, Shi M, Zhu H, Lu X, Zhang F, Chen H. Nat Commun, 2021, 12: 4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang Y, Zhang J, Chen Y, Chai G, Xu X, Yu L, Ma R, Yu H, Liu T, Liu P, Peng Q, Yan H. Adv Energy Mater, 2021, 11: 2100079

    Article  CAS  Google Scholar 

  42. Lin F, Jiang K, Kaminsky W, Zhu Z, Jen AKY. J Am Chem Soc, 2020, 142: 15246–15251

    Article  CAS  PubMed  Google Scholar 

  43. Luo Z, Sun R, Zhong C, Liu T, Zhang G, Zou Y, Jiao X, Min J, Yang C. Sci China Chem, 2020, 63: 361–369

    Article  CAS  Google Scholar 

  44. Mo D, Chen H, Zhou J, Tang N, Han L, Zhu Y, Chao P, Lai H, Xie Z, He F. J Mater Chem A, 2020, 8: 8903–8912

    Article  CAS  Google Scholar 

  45. Qin R, Wang D, Zhou G, Yu ZP, Li S, Li Y, Liu ZX, Zhu H, Shi M, Lu X, Li CZ, Chen H. J Mater Chem A, 2019, 7: 27632–27639

    Article  CAS  Google Scholar 

  46. Wang L, Guo C, Zhang X, Cheng S, Li D, Cai J, Chen C, Fu Y, Zhou J, Qin H, Liu D, Wang T. Chem Mater, 2021, 33: 8854–8862

    Article  CAS  Google Scholar 

  47. Yang C, An Q, Bai HR, Zhi HF, Ryu HS, Mahmood A, Zhao X, Zhang S, Woo HY, Wang JL. Angew Chem Intl Edit, 2021, 60: 19241–19252

    Article  CAS  Google Scholar 

  48. Liu T, Zhang Y, Shao Y, Ma R, Luo Z, Xiao Y, Yang T, Lu X, Yuan Z, Yan H, Chen Y, Li Y. Adv Funct Mater, 2020, 30: 2000456

    Article  CAS  Google Scholar 

  49. Zhou Z, Liu W, Zhou G, Zhang M, Qian D, Zhang J, Chen S, Xu S, Yang C, Gao F, Zhu H, Liu F, Zhu X. Adv Mater, 2020, 32: 1906324

    Article  CAS  Google Scholar 

  50. Zhu C, An K, Zhong W, Li Z, Qian Y, Su X, Ying L. Chem Commun, 2020, 56: 4700–4703

    Article  CAS  Google Scholar 

  51. Feng H, Qiu N, Wang X, Wang Y, Kan B, Wan X, Zhang M, Xia A, Li C, Liu F, Zhang H, Chen Y. Chem Mater, 2017, 29: 7908–7917

    Article  CAS  Google Scholar 

  52. Shi Y, Pan J, Yu J, Zhang J, Gao F, Lu K, Wei Z. Sol RRL, 2021, 5: 2100008

    Article  CAS  Google Scholar 

  53. Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z’, Hou J. Macromolecules, 2012, 45: 9611–9617

    Article  CAS  Google Scholar 

  54. Gavezzotti A, Filippini G. J Phys Chem, 1994, 98: 4831–4837

    Article  CAS  Google Scholar 

  55. Gavezzotti A. Acc Chem Res, 1994, 27: 309–314

    Article  CAS  Google Scholar 

  56. Sun K, Xiao Z, Lu S, Zajaczkowski W, Pisula W, Hanssen E, White JM, Williamson RM, Subbiah J, Ouyang J, Holmes AB, Wong WWH, Jones DJ. Nat Commun, 2015, 6: 6013

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356–3359

    Article  CAS  PubMed  Google Scholar 

  58. Politzer P, Murray JS. Struct Chem, 2021, 32: 623–629

    Article  CAS  Google Scholar 

  59. Shuai Z, Geng H, Xu W, Liao Y, André JM. Chem Soc Rev, 2014, 43: 2662–2679

    Article  CAS  PubMed  Google Scholar 

  60. Marcus RA. Angew Chem Int Ed, 1993, 32: 1111–1121

    Article  Google Scholar 

  61. Geng H, Peng Q, Wang L, Li H, Liao Y, Ma Z, Shuai Z. Adv Mater, 2012, 24: 3568–3572

    Article  CAS  PubMed  Google Scholar 

  62. Li G, Li D, Ma R, Liu T, Luo Z, Cui G, Tong L, Zhang M, Wang Z, Liu F, Xu L, Yan H, Tang B. J Mater Chem A, 2020, 8: 5927–5935

    Article  CAS  Google Scholar 

  63. Koster LJA, Kemerink M, Wienk MM, Maturová K, Janssen RAJ. Adv Mater, 2011, 23: 1670–1674

    Article  CAS  PubMed  Google Scholar 

  64. Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577

    Article  CAS  PubMed  Google Scholar 

  65. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  CAS  Google Scholar 

  66. Miller OD, Yablonovitch E, Kurtz SR. IEEE J Photovol, 2012, 2: 303–311

    Article  Google Scholar 

  67. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F. Adv Energy Mater, 2018, 8: 1801352

    Article  Google Scholar 

  68. Vandewal K, Benduhn J, Nikolis VC. Sustain Energy Fuels, 2018, 2: 538–544

    Article  CAS  Google Scholar 

  69. Eisner FD, Azzouzi M, Fei Z, Hou X, Anthopoulos TD, Dennis TJS, Heeney M, Nelson J. J Am Chem Soc, 2019, 141: 6362–6374

    Article  CAS  PubMed  Google Scholar 

  70. Benduhn J, Tvingstedt K, Piersimoni F, Ullbrich S, Fan Y, Tropiano M, McGarry KA, Zeika O, Riede MK, Douglas CJ, Barlow S, Marder SR, Neher D, Spoltore D, Vandewal K. Nat Energy, 2017, 2: 17053

    Article  CAS  Google Scholar 

  71. Armin A, Zarrabi N, Sandberg OJ, Kaiser C, Zeiske S, Li W, Meredith P. Adv Energy Mater, 2020, 10: 2001828

    Article  CAS  Google Scholar 

  72. List M, Sarkar T, Perkhun P, Ackermann J, Luo C, Würfel U. Nat Commun, 2018, 9: 3631

    Article  PubMed  PubMed Central  Google Scholar 

  73. Perdigón-Toro L, Phuong LQ, Zeiske S, Vandewal K, Armin A, Shoaee S, Neher D. ACS Energy Lett, 2021, 6: 557–564

    Article  Google Scholar 

  74. Liu Q, Smeets S, Mertens S, Xia Y, Valencia A, D’Haen J, Maes W, Vandewal K. Joule, 2021, 5: 2365–2379

    Article  CAS  Google Scholar 

  75. Garcia-Belmonte G, Boix PP, Bisquert J, Lenes M, Bolink HJ, La Rosa A, Filippone S, Martín N. J Phys Chem Lett, 2010, 1: 2566–2571

    Article  CAS  Google Scholar 

  76. Urbach F. Phys Rev, 1953, 92: 1324

    Article  CAS  Google Scholar 

  77. Zhang Z, Li Y, Cai G, Zhang Y, Lu X, Lin Y. J Am Chem Soc, 2020, 142: 18741–18745

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (21935007, 52025033, 51873089), MoST of China (2019YFA0705900), Tianjin city (20JCZDJC00740), 111 Project (B12015), and the Opening Project of State Key Laboratory of Luminescent Materials and Devices (SCUT, 2021-skllmd-09). We also acknowledge the GIWAXS measurements provided by Prof Zhixiang Wei at the National Center for Nanoscience and Technology, CAS, Beijing, China. All the theoretical calculations were performed on National Supercomputer Center in Guangzhou.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guankui Long, Zhaoyang Yao or Yongsheng Chen.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting Information (SI)

11426_2022_1264_MOESM1_ESM.pdf

Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zou, Y., Liang, H. et al. Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Sci. China Chem. 65, 1362–1373 (2022). https://doi.org/10.1007/s11426-022-1264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1264-y

Keywords

Navigation