Skip to main content
Log in

Turning weak into strong: on the CTAB-induced active surface growth

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

Discovering new methods and principles in the inequivalent growth of equivalent facets is of great significance for going beyond symmetrical nanocrystals and for out-of-box exploration. In this work, we demonstrate that a middle ground exists between the traditional weak ligands and the strong ligands with unusual growth modes. By modifying the seed concentration during the growth of pentagonal Au nanorods, the typical weak ligand cetyltrimethylammonium bromide (CTAB) is made strong, leading to notches of restricted growth and even the active surface growth mode. In-depth investigation in the link between growth kinetics and ligand packing reveals the principle of their interplay—that the on-off dynamics of the ligands only allows for a certain limit of materials deposition rate. Beyond this limit, the growth materials build up and are then diverted elsewhere, leading to inequivalent growth. The fact that a freshly grown surface has few ligands promotes the active surface growth, focusing the growth materials onto a few sites. We believe that the knowhow of interfering ligand packing via growth kinetics would offer a powerful tool of synthetic control, where the facet- and curvature-dependent ligand packing is expected to be useful synthetic handles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Suslu A, Albayrak AZ, Urkmez AS, Bayir E, Cocen U. J Mater Sci Mater Med, 2014, 25: 2677–2689

    Article  CAS  Google Scholar 

  2. Zhang X, Wang SQ, Liu M, Hui J, Yang B, Tao L, Wei Y. Toxicol Res, 2013, 2: 335

    Article  CAS  Google Scholar 

  3. Yang W, Brownlow JW, Walker DL, Lu J. Water Resour Res, 2021, 57: e29522

    Google Scholar 

  4. Yao Y, Wei M, Kang W. Adv Colloid Interface Sci, 2021, 294: 102477

    Article  CAS  Google Scholar 

  5. Abduraimova A, Molkenova A, Duisembekova A, Mulikova T, Kanayeva D, Atabaev TS. Nanomaterials, 2021, 11: 477

    Article  CAS  Google Scholar 

  6. Nakata K, Tsuchido T, Matsumura Y. J Appl MicroBiol, 2011, 110: 568–579

    Article  CAS  Google Scholar 

  7. Khamis E, Al-Lohedan HA, Al-Mayouf A, Issa ZA. Mat-wiss u Werkstofftech, 1997, 28: 46–50

    Article  CAS  Google Scholar 

  8. Malik MA, Hashim MA, Nabi F, Al-Thabaiti SA, Khan Z. Int J Electrochem Sci, 2011, 6: 1927–1948

    CAS  Google Scholar 

  9. Yin Y, Alivisatos AP. Nature, 2005, 437: 664–670

    Article  CAS  Google Scholar 

  10. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Chem Rev, 2005, 105: 1103–1170

    Article  CAS  Google Scholar 

  11. Zang D, Huang H, Qin R, Wang X, Fang X, Zheng N. Sci China Chem, 2016, 59: 452–458

    Article  CAS  Google Scholar 

  12. Yang TH, Shi Y, Janssen A, Xia Y. Angew Chem Int Ed, 2020, 59: 15378–15401

    Article  CAS  Google Scholar 

  13. Wang W, Xu T, Bai T, Zhu C, Zhang Q, Zhang H, Zhang H, Guo Z, Zheng H, Sun L. Sci China Mater, 2020, 63: 2599–2605

    Article  CAS  Google Scholar 

  14. Zhen S, Wu T, Huang X, Li Y, Huang C. Sci China Chem, 2016, 59: 1045–1050

    Article  CAS  Google Scholar 

  15. Feng Y, He J, Wang H, Tay YY, Sun H, Zhu L, Chen H. J Am Chem Soc, 2012, 134: 2004–2007

    Article  CAS  Google Scholar 

  16. Feng Y, Wang Y, He J, Song X, Tay YY, Hng HH, Ling XY, Chen H. J Am Chem Soc, 2015, 137: 7624–7627

    Article  CAS  Google Scholar 

  17. DuChene JS, Niu W, Abendroth JM, Sun Q, Zhao W, Huo F, Wei WD. Chem Mater, 2013, 25: 1392–1399

    Article  CAS  Google Scholar 

  18. Ghosh S, Manna L. Chem Rev, 2018, 118: 7804–7864

    Article  CAS  Google Scholar 

  19. Gao J, Bender CM, Murphy CJ. Langmuir, 2003, 19: 9065–9070

    Article  CAS  Google Scholar 

  20. Li Y, Lin H, Zhou W, Sun L, Samanta D, Mirkin CA. Sci Adv, 2021, 7: eabf1410

    Article  CAS  Google Scholar 

  21. Sánchez-Iglesias A, Winckelmans N, Altantzis T, Bals S, Grzelczak M, Liz-Marzán LM. J Am Chem Soc, 2017, 139: 107–110

    Article  Google Scholar 

  22. Jana NR, Gearheart L, Murphy CJ. J Phys Chem B, 2001, 105: 4065–4067

    Article  CAS  Google Scholar 

  23. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S. J Mater Chem, 2002, 12: 1765–1770

    Article  CAS  Google Scholar 

  24. Tan RLS, Chong WH, Feng Y, Song X, Tham CL, Wei J, Lin M, Chen H. J Am Chem Soc, 2016, 138: 10770–10773

    Article  CAS  Google Scholar 

  25. Lofton C, Sigmund W. Adv Funct Mater, 2005, 15: 1197–1208

    Article  CAS  Google Scholar 

  26. Wang Y, He J, Liu C, Chong WH, Chen H. Angew Chem Int Ed, 2015, 54: 2022–2051

    Article  CAS  Google Scholar 

  27. Pradhan N, Reifsnyder D, Xie R, Aldana J, Peng X. J Am Chem Soc, 2007, 129: 9500–9509

    Article  CAS  Google Scholar 

  28. Wang Y, Zeiri O, Meshi L, Stellacci F, Weinstock IA. Chem Commun, 2012, 48: 9765–9767

    Article  CAS  Google Scholar 

  29. Wang F, Cheng S, Bao Z, Wang J. Angew Chem Int Ed, 2013, 52: 10344–10348

    Article  CAS  Google Scholar 

  30. Kim A, Zhou S, Yao L, Ni S, Luo B, Sing CE, Chen Q. J Am Chem Soc, 2019, 141: 11796–11800

    Article  CAS  Google Scholar 

  31. Chen H, Shao L, Li Q, Wang J. Chem Soc Rev, 2013, 42: 2679–2724

    Article  CAS  Google Scholar 

  32. Feng Y, Wang Y, Song X, Xing S, Chen H. Chem Sci, 2017, 8: 430–436

    Article  CAS  Google Scholar 

  33. He J, Wang Y, Feng Y, Qi X, Zeng Z, Liu Q, Teo WS, Gan CL, Zhang H, Chen H. ACS Nano, 2013, 7: 2733–2740

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21703104, 21673117, 91956109), Jiangsu Provincial Foundation for Specially-Appointed Professor, Jiangsu Science and Technology Plan (BK20211258), Fellowship of China Postdoctoral Science Foundation (2019M661810), Nanjing Tech University (39837102, 39837131, 39837140), and SICAM Fellowship from Jiangsu National Synergetic Innovation Centre for Advanced Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Chen.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/xx. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zong, J., Xiang, T. et al. Turning weak into strong: on the CTAB-induced active surface growth. Sci. China Chem. 65, 1299–1305 (2022). https://doi.org/10.1007/s11426-022-1253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1253-7

Keywords

Navigation