Skip to main content
Log in

Cobalt-catalyzed divergent functionalization of N-sulfonyl amines via β-carbon elimination

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This article demonstrates a catalytic method for C(aryl)—C(alkyl) bond functionalization of N-sulfonyl amines. A cobalt(III) catalyst was used to cleave the C—C bond via β-carbon elimination, providing a metallacycle intermediate. Subsequent allylation, amidation, or alkenylation of the intermediate led to divergent conversions in the presence of diverse coupling partners. when the coupling partner was a diene, an insertion-type functionalization was realized with an exclusive 1,3-regioselectivity, in which both of the fragments derived from N-sulfonyl amines were utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang B, Perea MA, Sarpong R. Angew Chem Int Ed, 2020, 59: 18898–18919

    Article  CAS  Google Scholar 

  2. Nairoukh Z, Cormier M, Marek I. Nat Rev Chem, 2017, 1: 0035

    Article  Google Scholar 

  3. Murakami M, Ishida N. J Am Chem Soc, 2016, 138: 13759–13769

    Article  CAS  PubMed  Google Scholar 

  4. Lutz MDR, Morandi B. Chem Rev, 2021, 121: 300–326

    Article  CAS  PubMed  Google Scholar 

  5. O’Reilly ME, Dutta S, Veige AS. Chem Rev, 2016, 116: 8105–8145

    Article  PubMed  Google Scholar 

  6. Satoh T, Miura M. Top Organomet Chem, 2005, 14: 1–20

    CAS  Google Scholar 

  7. For selected reviews on C—C bond activation, see: (a)Sokolova OO, Bower JF. Chem Rev, 2021, 121: 80–109

    Article  CAS  PubMed  Google Scholar 

  8. Nogi K, Yorimitsu H. Chem Rev, 2021, 121: 345–364

    Article  CAS  PubMed  Google Scholar 

  9. Lu H, Yu TY, Xu PF, Wei H. Chem Rev, 2021, 121: 365–411

    Article  CAS  PubMed  Google Scholar 

  10. Li JF, Luan YX, Ye M. Sci China Chem, 2021, 64: 1923–1937

    Article  CAS  Google Scholar 

  11. Xia Y, Dong G. Nat Rev Chem, 2020, 4: 600–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song F, Gou T, Wang BQ, Shi ZJ. Chem Soc Rev, 2018, 47: 7078–7115

    Article  CAS  PubMed  Google Scholar 

  13. Fumagalli G, Stanton S, Bower JF. Chem Rev, 2017, 117: 9404–9432

    Article  CAS  PubMed  Google Scholar 

  14. Chen PH, Billett BA, Tsukamoto T, Dong G. ACS Catal, 2017, 7: 1340–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim DS, Park WJ, Jun CH. Chem Rev, 2017, 117: 8977–9015

    Article  CAS  PubMed  Google Scholar 

  16. Souillart L, Cramer N. Chem Rev, 2015, 115: 9410–9464

    Article  CAS  PubMed  Google Scholar 

  17. Chen F, Wang T, Jiao N. Chem Rev, 2014, 114: 8613–8661

    Article  CAS  PubMed  Google Scholar 

  18. For recent examples on C—C bond activation, see: (a) Cao J, Wu H, Wang Q, Zhu J. Nat Chem, 2021, 13: 671–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou X, Xu Y, Dong G. Nat Catal, 2021, 4: 703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo JH, Liu Y, Lin XC, Tang TM, Wang BQ, Hu P, Zhao KQ, Song F, Shi ZJ. Angew Chem Intl Edit, 2021, 60: 19079–19084

    Article  CAS  Google Scholar 

  21. Lu H, Zhao TT, Bai JH, Ye D, Xu PF, Wei H. Angew Chem Int Ed, 2020, 59: 23537–23543

    Article  CAS  Google Scholar 

  22. Pannilawithana N, Yi CS. ACS Catal, 2020, 10: 5852–5861

    Article  CAS  Google Scholar 

  23. Li H, Ma B, Liu QS, Wang ML, Wang ZY, Xu H, Li LJ, Wang X, Dai HX. Angew Chem Int Ed, 2020, 59: 14388–14393

    Article  CAS  Google Scholar 

  24. Morioka T, Nishizawa A, Furukawa T, Tobisu M, Chatani N. J Am Chem Soc, 2017, 139: 1416–1419

    Article  CAS  PubMed  Google Scholar 

  25. Lutz MDR, Gasser VCM, Morandi B. Chem, 2021, 7: 1108–1119

    Article  CAS  Google Scholar 

  26. Qiu Y, Scheremetjew A, Ackermann L. J Am Chem Soc, 2019, 141: 2731–2738

    Article  CAS  PubMed  Google Scholar 

  27. Smits G, Audic B, Wodrich MD, Corminboeuf C, Cramer N. Chem Sci, 2017, 8: 7174–7179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Li Y, Zhang XS, Chen K, Wang X, Shi ZJ. J Am Chem Soc, 2011, 133: 15244–15247

    Article  CAS  PubMed  Google Scholar 

  29. Zhao P, Incarvito CD, Hartwig JF. J Am Chem Soc, 2006, 128: 3124–3125

    Article  CAS  PubMed  Google Scholar 

  30. For selected examples of β-C elimination reactions beyond alcohols, see: Tan G, Das M, Maisuls I, Strassert CA, Glorius F. Angew Chem Int Ed, 2021, 60: 15650–15655

    Article  CAS  Google Scholar 

  31. Onodera S, Togashi R, Ishikawa S, Kochi T, Kakiuchi F. J Am Chem Soc, 2020, 142: 7345–7349

    Article  CAS  PubMed  Google Scholar 

  32. Onodera S, Ishikawa S, Kochi T, Kakiuchi F. J Am Chem Soc, 2018, 140: 9788–9792

    Article  CAS  PubMed  Google Scholar 

  33. Deng R, Xi J, Li Q, Gu Z. Chem, 2019, 5: 1834–1846

    Article  CAS  Google Scholar 

  34. Bour JR, Green JC, Winton VJ, Johnson JB. J Org Chem, 2013, 78: 1665–1669

    Article  CAS  PubMed  Google Scholar 

  35. Terao Y, Wakui H, Satoh T, Miura M, Nomura M. J Am Chem Soc, 2001, 123: 10407–10408

    Article  CAS  PubMed  Google Scholar 

  36. Huang W, Meng F. Angew Chem Int Ed, 2021, 60: 2694–2698

    Article  CAS  Google Scholar 

  37. Ozkal E, Cacherat B, Morandi B. ACS Catal, 2015, 5: 6458–6462

    Article  CAS  Google Scholar 

  38. Wang H, Choi I, Rogge T, Kaplaneris N, Ackermann L. Nat Catal, 2018, 1: 993–1001

    Article  CAS  Google Scholar 

  39. Wang H, Kaplaneris N, Ackermann L. Cell Rep Phys Sci, 2020, 1: 100178

    Article  Google Scholar 

  40. Kondo T, Kodoi K, Nishinaga E, Okada T, Morisaki Y, Watanabe Y, Mitsudo T. J Am Chem Soc, 1998, 120: 5587–5588

    Article  CAS  Google Scholar 

  41. Shao Y, Zhang F, Zhang J, Zhou X. Angew Chem Int Ed, 2016, 55: 11485–11489

    Article  CAS  Google Scholar 

  42. Ye J, Limouni A, Zaichuk S, Lautens M. Angew Chem Int Ed, 2015, 54: 3116–3120

    Article  CAS  Google Scholar 

  43. Sugiishi T, Kimura A, Nakamura H. J Am Chem Soc, 2010, 132: 5332–5333

    Article  CAS  PubMed  Google Scholar 

  44. Tsuritani T, Yamamoto Y, Kawasaki M, Mase T. Org Lett, 2009, 11: 1043–1045

    Article  CAS  PubMed  Google Scholar 

  45. Fan C, Lv XY, Xiao LJ, Xie JH, Zhou QL. J Am Chem Soc, 2019, 141: 2889–2893

    Article  CAS  PubMed  Google Scholar 

  46. Li L, Liu YC, Shi H. J Am Chem Soc, 2021, 143: 4154–4161

    Article  CAS  PubMed  Google Scholar 

  47. Yan XB, Li L, Wu WQ, Xu L, Li K, Liu YC, Shi H. Nat Commun, 2021, 12: 5881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marcoux JF, Wagaw S, Buchwald SL. J Org Chem, 1997, 62: 1568–1569

    Article  CAS  Google Scholar 

  49. Hummel JR, Boerth JA, Ellman JA. Chem Rev, 2017, 117: 9163–9227

    Article  CAS  PubMed  Google Scholar 

  50. For a review on Co-catalyzed activation of aryl C—O bonds, see: Su B, Cao ZC, Shi ZJ. Acc Chem Res, 2015, 48: 886–896

    Article  CAS  PubMed  Google Scholar 

  51. For selected examples of directed C—C bond activation, see: Zhu J, Zhang R, Dong G. Nat Chem, 2021, 13: 836–842

    Article  CAS  PubMed  Google Scholar 

  52. Yu TY, Xu WH, Lu H, Wei H. Chem Sci, 2020, 11: 12336–12340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu J, Chen PH, Lu G, Liu P, Dong G. J Am Chem Soc, 2019, 141: 18630–18640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao TT, Xu WH, Zheng ZJ, Xu PF, Wei H. J Am Chem Soc, 2018, 140: 586–589

    Article  CAS  PubMed  Google Scholar 

  55. Moselage M, Li J, Kramm F, Ackermann L. Angew Chem Int Ed, 2017, 56: 5341–5344

    Article  CAS  Google Scholar 

  56. Yoshino T, Matsunaga S. Adv Synth Catal, 2017, 359: 1245–1262

    Article  CAS  Google Scholar 

  57. Moselage M, Li J, Ackermann L. ACS Catal, 2016, 6: 498–525

    Article  CAS  Google Scholar 

  58. Zhang SS, Wu JQ, Lao YX, Liu XG, Liu Y, Lv WX, Tan DH, Zeng YF, Wang H. Org Lett, 2014, 16: 6412–6415

    Article  CAS  PubMed  Google Scholar 

  59. Zhang SS, Wu JQ, Liu X, Wang H. ACS Catal, 2015, 5: 210–214

    Article  CAS  Google Scholar 

  60. For addition of C-Carbonyl or C-CN bonds to unsaturated bonds, see: (a) Ito Y, Nakatani S, Shiraki R, Kodama T, Tobisu M. J Am Chem Soc, 2022, 144: 662–666

    Article  CAS  PubMed  Google Scholar 

  61. Denton EH, Lee YH, Roediger S, Boehm P, Fellert M, Morandi B. Angew Chem Int Ed, 2021, 60: 23435–23443

    Article  CAS  Google Scholar 

  62. Nakao Y. Bull Chem Soc Jpn, 2012, 85: 731–745

    Article  CAS  Google Scholar 

  63. Wentzel MT, Reddy VJ, Hyster TK, Douglas CJ. Angew Chem Int Ed, 2009, 48: 6121–6123

    Article  CAS  Google Scholar 

  64. For ring expansion of non-strained unsaturated compounds, see: Zhang R, Xia Y, Dong G. Angew Chem Int Ed, 2021, 60: 20476–20482

    Article  CAS  Google Scholar 

  65. Xia Y, Ochi S, Dong G. J Am Chem Soc, 2019, 141: 13038–13042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Herraiz AG, Cramer N. ACS Catal, 2021, 11: 11938–11944

    Article  CAS  Google Scholar 

  67. Dongbang S, Ellman JA. Angew Chem Int Ed, 2021, 60: 2135–2139

    Article  CAS  Google Scholar 

  68. Dongbang S, Shen Z, Ellman JA. Angew Chem Int Ed, 2019, 58: 12590–12594

    Article  Google Scholar 

  69. Yang J, Ji DW, Hu YC, Min XT, Zhou X, Chen QA. Chem Sci, 2019, 10: 9560–9564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boerth JA, Maity S, Williams SK, Mercado BQ, Ellman JA. Nat Catal, 2018, 1: 673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boerth JA, Ellman JA. Angew Chem Int Ed, 2017, 56: 9976–9980

    Article  CAS  Google Scholar 

  72. Boerth JA, Hummel JR, Ellman JA. Angew Chem Int Ed, 2016, 55: 12650–12654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2022SDXHDX0006) and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2020R01004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Shi.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Shi, H. Cobalt-catalyzed divergent functionalization of N-sulfonyl amines via β-carbon elimination. Sci. China Chem. 65, 2214–2218 (2022). https://doi.org/10.1007/s11426-022-1251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1251-4

Keywords

Navigation