Skip to main content
Log in

Two-dimensional PtPb-PbS heterostructure enables improved kinetics and highlighted bifunctional antipoisoning for methanol electrooxidation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) platinum (Pt)-based nanomaterials are considered as the ideal fuel cell catalysts, while their rational synthesis associated with phase control remains a formidable challenge. Herein, we firstly design the novel 2D Pt-lead-sulphur heterophased nanosheets (PtPbS HPNSs) as efficient high-toleration electrocatalysts for methanol oxidation reaction (MOR). They exhibit much higher activity and more highlighted bifunctional antipoisoning abilities than PtPb NSs and commercial Pt/C. Further density functional theory (DFT) simulation verifies that the decreased electron density of Pt sites worked by Pb and S makes CO intermediate favorable to desorb, avoiding the formation of CO*-polluted Pt sites. Simultaneously, this heterophased interface effectively weakens the adsorption of S2−-species and improves the S-poisoning tolerance, showing a route to realize nearly innoxious catalysis. The present work highlights the importance of heterophase control in tuning antipoisoning property for 2D Pt-based nanomaterials, which is key for the rational design of efficient fuel cell anodic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kakati N, Maiti J, Lee SH, Jee SH, Viswanathan B, Yoon YS. Chem Rev, 2014, 114: 12397–12429

    Article  CAS  Google Scholar 

  2. Wu X, Jiang Y, Yan Y, Li X, Luo S, Huang J, Li J, Shen R, Yang D, Zhang H. Adv Sci, 2019, 6: 1902249

    Article  CAS  Google Scholar 

  3. Feng Q, Zhao S, He D, Tian S, Gu L, Wen X, Chen C, Peng Q, Wang D, Li Y. J Am Chem Soc, 2018, 140: 2773–2776

    Article  CAS  Google Scholar 

  4. Jung N, Chung DY, Ryu J, Yoo SJ, Sung YE. Nano Today, 2014, 9: 433–456

    Article  CAS  Google Scholar 

  5. Feng Y, Liu H, Yang J. Sci Adv, 2017, 3: e1700580

    Article  Google Scholar 

  6. Guo S, Li D, Zhu H, Zhang S, Markovic NM, Stamenkovic VR, Sun S. Angew Chem Int Ed, 2013, 52: 3465–3468

    Article  CAS  Google Scholar 

  7. Huang H, Li K, Chen Z, Luo L, Gu Y, Zhang D, Ma C, Si R, Yang J, Peng Z, Zeng J. J Am Chem Soc, 2017, 139: 8152–8159

    Article  CAS  Google Scholar 

  8. Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma JY, Su D, Huang X. Science, 2016, 354: 1410–1414

    Article  CAS  Google Scholar 

  9. Liao HG, Cui L, Whitelam S, Zheng H. Science, 2012, 336: 1011–1014

    Article  CAS  Google Scholar 

  10. Xu X, Zhang X, Sun H, Yang Y, Dai X, Gao J, Li X, Zhang P, Wang HH, Yu NF, Sun SG. Angew Chem Int Ed, 2014, 53: 12522–12527

    CAS  Google Scholar 

  11. Bu L, Guo S, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao J, Guo J, Huang X. Nat Commun, 2016, 7: 11850

    Article  CAS  Google Scholar 

  12. Kong Z, Maswadeh Y, Vargas JA, Shan S, Wu ZP, Kareem H, Leff AC, Tran DT, Chang F, Yan S, Nam S, Zhao X, Lee JM, Luo J, Shastri S, Yu G, Petkov V, Zhong CJ. J Am Chem Soc, 2020, 142: 1287–1299

    Article  CAS  Google Scholar 

  13. Shao Q, Wang P, Zhu T, Huang X. Acc Chem Res, 2019, 52: 3384–3396

    Article  CAS  Google Scholar 

  14. Zhuang L, Jia Y, Liu H, Wang X, Hocking RK, Liu H, Chen J, Ge L, Zhang L, Li M, Dong CL, Huang YC, Shen S, Yang D, Zhu Z, Yao X. Adv Mater, 2019, 31: 1805581

    Article  Google Scholar 

  15. Huang L, Zhang X, Wang Q, Han Y, Fang Y, Dong S. J Am Chem Soc, 2018, 140: 1142–1147

    Article  CAS  Google Scholar 

  16. Huang W, Wang H, Zhou J, Wang J, Duchesne PN, Muir D, Zhang P, Han N, Zhao F, Zeng M, Zhong J, Jin C, Li Y, Lee ST, Dai H. Nat Commun, 2015, 6: 10035

    Article  CAS  Google Scholar 

  17. Wang X, Xie M, Lyu F, Yiu YM, Wang Z, Chen J, Chang LY, Xia Y, Zhong Q, Chu M, Yang H, Cheng T, Sham TK, Zhang Q. Nano Lett, 2020, 20: 7751–7759

    Article  CAS  Google Scholar 

  18. Li HH, Fu QQ, Xu L, Ma SY, Zheng YR, Liu XJ, Yu SH. Energy Environ Sci, 2017, 10: 1751–1756

    Article  CAS  Google Scholar 

  19. Wang W, Chen X, Zhang X, Ye J, Xue F, Zhen C, Liao X, Li H, Li P, Liu M, Kuang Q, Xie Z, Xie S. Nano Energy, 2020, 71: 104623

    Article  CAS  Google Scholar 

  20. Mao J, Chen W, He D, Wan J, Pei J, Dong J, Wang Y, An P, Jin Z, Xing W, Tang H, Zhuang Z, Liang X, Huang Y, Zhou G, Wang L, Wang D, Li Y. Sci Adv, 2017, 3: e1603068

    Article  Google Scholar 

  21. Zhang W, Yang Y, Huang B, Lv F, Wang K, Li N, Luo M, Chao Y, Li Y, Sun Y, Xu Z, Qin Y, Yang W, Zhou J, Du Y, Su D, Guo S. Adv Mater, 2019, 31: 1805833

    Article  Google Scholar 

  22. Hu G, Shang L, Sheng T, Chen Y, Wang L. Adv Funct Mater, 2020, 30: 2002281

    Article  CAS  Google Scholar 

  23. Maksimuk S, Yang S, Peng Z, Yang H. J Am Chem Soc, 2007, 129: 8684–8685

    Article  CAS  Google Scholar 

  24. Huang L, Zhang X, Han Y, Wang Q, Fang Y, Dong S. Chem Mater, 2017, 29: 4557–4562

    Article  CAS  Google Scholar 

  25. Kang Y, Qi L, Li M, Diaz RE, Su D, Adzic RR, Stach E, Li J, Murray CB. ACS Nano, 2012, 6: 2818–2825

    Article  CAS  Google Scholar 

  26. Luo S, Chen W, Cheng Y, Song X, Wu Q, Li L, Wu X, Wu T, Li M, Yang Q, Deng K, Quan Z. Adv Mater, 2019, 31: 1903683

    Article  CAS  Google Scholar 

  27. Feng Y, Shao Q, Lv F, Bu L, Guo J, Guo S, Huang X. Adv Sci, 2020, 7: 1800178

    Article  CAS  Google Scholar 

  28. Zhang D, Wu F, Peng M, Wang X, Xia D, Guo G. J Am Chem Soc, 2015, 137: 6263–6269

    Article  CAS  Google Scholar 

  29. Saleem F, Xu B, Ni B, Liu H, Nosheen F, Li H, Wang X. Adv Mater, 2015, 27: 2013–2018

    Article  CAS  Google Scholar 

  30. Saleem F, Zhang Z, Xu B, Xu X, He P, Wang X. J Am Chem Soc, 2013, 135: 18304–18307

    Article  CAS  Google Scholar 

  31. Chen W, Gao W, Tu P, Robert T, Ma Y, Shan H, Gu X, Shang W, Tao P, Song C, Deng T, Zhu H, Pan X, Yang H, Wu J. Nano Lett, 2018, 18: 5905–5912

    Article  CAS  Google Scholar 

  32. Zhu E, Yan X, Wang S, Xu M, Wang C, Liu H, Huang J, Xue W, Cai J, Heinz H, Li Y, Huang Y. Nano Lett, 2019, 19: 3730–3736

    Article  CAS  Google Scholar 

  33. Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  35. Wu Y, Liu X, Han D, Song X, Shi L, Song Y, Niu S, Xie Y, Cai J, Wu S, Kang J, Zhou J, Chen Z, Zheng X, Xiao X, Wang G. Nat Commun, 2018, 9: 1425

    Article  Google Scholar 

  36. Ferrin P, Mavrikakis M. J Am Chem Soc, 2009, 131: 14381–14389

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2017YFA0208200, 2016YFA0204100), the National Natural Science Foundation of China (22025108), and the Start-Up support from Xiamen University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingzheng Bu or Xiaoqing Huang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

11426_2022_1248_MOESM1_ESM.pdf

Two-dimensional PtPb-PbS heterostructure enables improved kinetics and highlighted bifunctional antipoisoning for methanol electrooxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Tang, C., Bu, L. et al. Two-dimensional PtPb-PbS heterostructure enables improved kinetics and highlighted bifunctional antipoisoning for methanol electrooxidation. Sci. China Chem. 65, 1112–1121 (2022). https://doi.org/10.1007/s11426-022-1248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1248-y

Keywords

Navigation