Skip to main content
Log in

An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The solid-state electrolyte (SSE) has promising applications in next-generation lithium (Li) metal batteries (LMBs) because of its significantly enhanced safety and more compatible interface characteristics than flammable traditional liquid electrolytes. However, only a few attempts have achieved high-performance high-voltage LMBs, which is attributed to the fact that both high ionic conductivity and good compatibility with electrodes can hardly be achieved simultaneously. Herein, a composite solid-state electrolyte (CSE) based on star-shaped siloxane-based polymer electrolyte coupled with Li6.75La3Zr1.75Ta0.25O12 (LLZTO) ceramic fillers is designed and prepared through a facile in-situ polymerization method. The obtained CSE exhibits high ionic conductivity (i.e., 1.68 × 10−4 S cm−1 at a temperature of 60 °C), superior anodic stability, and high Li-ion transference number (i.e., 0.53) because of the multifunctional synergistic effect of the polymer electrolyte with LLZTO ceramic fillers. Moreover, the as-developed CSE shows excellent compatibility with Li anodes. As a result, the as-developed CSE enables the development of long-life 4.4-V-class solid-state LMBs with a LiCoO2 cathode, with 79.7% capacity retention and 99.74% average Coulombic efficiency after 500 cycles at a 0.5 C rate. Postmortem analysis of cycled batteries confirms that such superior battery performance can be mainly ascribed to the formation of a compatible electrode/electrolyte interface. Furthermore, excellent safety features can be observed in LiCoO2/Li pouch batteries. This work provides an important guide for the rational design of SSEs for high-voltage LMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiao S, Ren X, Cao R, Engelhard MH, Liu Y, Hu D, Mei D, Zheng J, Zhao W, Li Q, Liu N, Adams BD, Ma C, Liu J, Zhang JG, Xu W. Nat Energy, 2018, 3: 739–746

    Article  CAS  Google Scholar 

  2. Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Guo YG, Wan LJ. Sci China Chem, 2019, 62: 1286–1299

    Article  CAS  Google Scholar 

  3. Xiao Y, Xu R, Yan C, Liang Y, Ding JF, Huang JQ. Sci Bull, 2020, 65: 909–916

    Article  CAS  Google Scholar 

  4. Lv Z, Zhou Q, Zhang S, Dong S, Wang Q, Huang L, Chen K, Cui G. Energy Storage Mater, 2021, 37: 215–223

    Article  Google Scholar 

  5. Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman ED, Hu L. Nat Mater, 2017, 16: 572–579

    Article  CAS  Google Scholar 

  6. Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ. J Am Chem Soc, 2016, 138: 15825–15828

    Article  CAS  Google Scholar 

  7. Tan SJ, Zeng XX, Ma Q, Wu XW, Guo YG. Electrochem Energy Rev, 2018, 1: 113–138

    Article  CAS  Google Scholar 

  8. Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q. Proc Natl Acad Sci USA, 2017, 114: 11069–11074

    Article  CAS  Google Scholar 

  9. Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Adv Energy Mater, 2019, 9: 1804004

    Article  Google Scholar 

  10. Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough JB, Yu G. Angew Chem Int Ed, 2018, 57: 2096–2100

    Article  CAS  Google Scholar 

  11. Huo H, Zhao N, Sun J, Du F, Li Y, Guo X. J Power Sources, 2017, 372: 1–7

    Article  CAS  Google Scholar 

  12. Wang Q, Zhang H, Cui Z, Zhou Q, Shangguan X, Tian S, Zhou X, Cui G. Energy Storage Mater, 2019, 23: 466–490

    Article  Google Scholar 

  13. Dong Z, Wei J, Yue H, Zhang K, Wang L, Li X, Zhang Z, Yang W, Yang S. J Colloid Interface Sci, 2021, 595: 35–42

    Article  CAS  Google Scholar 

  14. Xue Z, He D, Xie X. J Mater Chem A, 2015, 3: 19218–19253

    Article  CAS  Google Scholar 

  15. Zhou D, He YB, Liu R, Liu M, Du H, Li B, Cai Q, Yang QH, Kang F. Adv Energy Mater, 2015, 5: 1500353

    Article  Google Scholar 

  16. Zhou D, Tkacheva A, Tang X, Sun B, Shanmukaraj D, Li P, Zhang F, Armand M, Wang G. Angew Chem Int Ed, 2019, 58: 6001–6006

    Article  CAS  Google Scholar 

  17. Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Nat Energy, 2019, 4: 365–373

    Article  CAS  Google Scholar 

  18. Wang Y, Ju J, Dong S, Yan Y, Jiang F, Cui L, Wang Q, Han X, Cui G. Adv Funct Mater, 2021, 31: 2101523

    Article  CAS  Google Scholar 

  19. Yan Y, Ju J, Dong S, Wang Y, Huang L, Cui L, Jiang F, Wang Q, Zhang Y, Cui G. Adv Sci, 2021, 8: 2003887

    Article  CAS  Google Scholar 

  20. Quartarone E, Mustarelli P. Chem Soc Rev, 2011, 40: 2525–2540

    Article  CAS  Google Scholar 

  21. Aldalur I, Martinez-Ibañez M, Piszcz M, Rodriguez-Martinez LM, Zhang H, Armand M. J Power Sources, 2018, 383: 144–149

    Article  CAS  Google Scholar 

  22. Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y. Nano Lett, 2015, 15: 2740–2745

    Article  CAS  Google Scholar 

  23. Zhang J, Zhao N, Zhang M, Li Y, Chu PK, Guo X, Di Z, Wang X, Li H. Nano Energy, 2016, 28: 447–454

    Article  CAS  Google Scholar 

  24. Zhou Q, Ma J, Dong S, Li X, Cui G. Adv Mater, 2019, 31: 1902029

    Article  CAS  Google Scholar 

  25. Park C, Kim DW, Prakash J, Sun YK. Solid State Ion, 2003, 159:111–119

    Article  CAS  Google Scholar 

  26. Liu W, Lin D, Sun J, Zhou G, Cui Y. ACS Nano, 2016, 10: 11407–11413

    Article  CAS  Google Scholar 

  27. Han JG, Lee JB, Cha A, Lee TK, Cho W, Chae S, Kang SJ, Kwak SK, Cho J, Hong SY, Choi NS. Energy Environ Sci, 2018, 11: 1552–1562

    Article  CAS  Google Scholar 

  28. Eshetu GG, Diemant T, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S. ACS Appl Mater Interfaces, 2016, 8: 16087–16100

    Article  CAS  Google Scholar 

  29. Liang JY, Zhang XD, Zeng XX, Yan M, Yin YX, Xin S, Wang WP, Wu XW, Shi JL, Wan LJ, Guo YG. Angew Chem Int Ed, 2020, 59: 6585–6589

    Article  CAS  Google Scholar 

  30. Feng X, Ren D, He X, Ouyang M. Joule, 2020, 4: 743–770

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070304), the National Natural Science Foundation of China (51502319, 51803230, 52003285, 21901248), the Natural Science Foundation of Shandong Province (ZR2021QE039, ZR2021QE149, ZR2020MB082), the Key Scientific and Technological Innovation Project of Shandong (2020CXGC010401), and the Taishan Scholars of Shandong Province (ts201511063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanrui Zhang or Guanglei Cui.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Dong, T., Zhou, Q. et al. An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries. Sci. China Chem. 65, 934–942 (2022). https://doi.org/10.1007/s11426-022-1221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1221-4

Keywords

Navigation