Skip to main content
Log in

BaYOBO3: A deep-ultraviolet rare-earth oxy-borate with a large second harmonic generation response

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Deep-ultraviolet (UV) nonlinear optical (NLO) crystals with excellent performances are of great importance in laser science and technology. However, to design and synthesize an ideal deep-UV NLO material with a balance between second harmonic generation (SHG) response and UV cut-off edge is still a huge challenge. Herein, a new oxy-borate BaYOBO3 (BaYBO) was designed and synthesized by substituting Be2+ with Y3+ from Sr2Be2B2O7. The BaYBO features a stable three-dimensional framework and satisfies the property balance between a large SHG response (~2.6×KH2PO4 (KDP)) and a short UV cut-off edge (<190 nm) as a promising deep-UV NLO candidate. The study of structure-property relationship indicates that the large SHG response of BaYBO is mainly attributed to the coplanar arrangement and large number density of BO3 triangles. These results demonstrate that substituting Be2+ with Y3+ cations is also a feasible strategy for developing new deep-UV NLO crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker P. Adv Mater, 1998, 10: 979–992

    Article  CAS  Google Scholar 

  2. Suffren Y, Leynaud O, Plaindoux P, Brenier A, Gautier-Luneau I. Inorg Chem, 2016, 55: 11264–11272

    Article  CAS  PubMed  Google Scholar 

  3. Chen C, Sasaki T, Li R, Wu Y, Lin Z, Mori Y, Hu Z, Wang J, Uda S, Yoshimura M, Kaneda Y. Nonlinear Optical Borate Crystals, Principles and Applications. Weinheim: Wiley-VCH, 2012. 343–376

    Book  Google Scholar 

  4. Li RA, Zhou Z, Lian YK, Jia F, Jiang X, Tang MC, Wu LM, Sun J, Chen L. Angew Chem Int Ed, 2020, 59: 11861–11865

    Article  CAS  Google Scholar 

  5. Chen X, Jing Q, Ok KM. Angew Chem, 2020, 132: 20503–20507

    Article  Google Scholar 

  6. Tran TT, Yu H, Rondinelli JM, Poeppelmeier KR, Halasyamani PS. Chem Mater, 2016, 28: 5238–5258

    Article  CAS  Google Scholar 

  7. Wang Y, Zhang B, Yang Z, Pan S. Angew Chem Int Ed, 2018, 57: 2150–2154

    Article  CAS  Google Scholar 

  8. Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S. Angew Chem Int Ed, 2017, 56: 14119–14123

    Article  CAS  Google Scholar 

  9. Wu H, Yu H, Yang Z, Hou X, Su X, Pan S, Poeppelmeier KR, Rondinelli JM. J Am Chem Soc, 2013, 135: 4215–4218

    Article  CAS  PubMed  Google Scholar 

  10. Yu P, Zhou LJ, Chen L. J Am Chem Soc, 2012, 134: 2227–2235

    Article  CAS  PubMed  Google Scholar 

  11. Wu H, Pan S, Poeppelmeier KR, Li H, Jia D, Chen Z, Fan X, Yang Y, Rondinelli JM, Luo H. J Am Chem Soc, 2011, 133: 7786–7790

    Article  CAS  PubMed  Google Scholar 

  12. Chen C, Ye N, Lin J, Jiang J, Zeng W, Wu B. Adv Mater, 1999, 11: 1071–1078

    Article  CAS  Google Scholar 

  13. Yao W, He R, Wang X, Lin Z, Chen C. Adv Opt Mater, 2014, 2: 411–417

    Article  CAS  Google Scholar 

  14. Zhao S, Gong P, Luo S, Bai L, Lin Z, Tang Y, Zhou Y, Hong M, Luo J. Angew Chem Int Ed, 2015, 54: 4217–4221

    Article  CAS  Google Scholar 

  15. Yu P, Wu LM, Zhou LJ, Chen L. J Am Chem Soc, 2014, 136: 480–487

    Article  CAS  PubMed  Google Scholar 

  16. Zou G, Ye N, Huang L, Lin X. J Am Chem Soc, 2011, 133: 20001–20007

    Article  CAS  PubMed  Google Scholar 

  17. Zhou J, Wu H, Yu H, Jiang S, Hu Z, Wang J, Wu Y, Halasyamani PS. J Am Chem Soc, 2020, 142: 4616–4620

    Article  CAS  PubMed  Google Scholar 

  18. Xia Y, Chen C, Tang D, Wu B. Adv Mater, 1995, 7: 79–81

    Article  CAS  Google Scholar 

  19. Chen C, Wang Y, Xia Y, Wu B, Tang D, Wu K, Wenrong Z, Yu L, Mei L. J Appl Phys, 1995, 77: 2268–2272

    Article  CAS  Google Scholar 

  20. Cyranoski D. Nature, 2009, 457: 953–955

    Article  CAS  PubMed  Google Scholar 

  21. Zhang B, Shi G, Yang Z, Zhang F, Pan S. Angew Chem, 2017, 129: 3974–3977

    Article  Google Scholar 

  22. Wang Y, Zhang B, Yang Z, Pan S. Angew Chem, 2018, 130: 2172–2176

    Article  Google Scholar 

  23. Chen C, Wang Y, Wu B, Wu K, Zeng W, Yu L. Nature, 1995, 373: 322–324

    Article  CAS  Google Scholar 

  24. Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Guha N, Freeman C, Galichet L, Cogliano V. Lancet Oncol, 2009, 10: 453–454

    Article  PubMed  Google Scholar 

  25. Yu H, Wu H, Pan S, Yang Z, Hou X, Su X, Jing Q, Poeppelmeier KR, Rondinelli JM. J Am Chem Soc, 2014, 136: 1264–1267

    Article  CAS  PubMed  Google Scholar 

  26. Ye N, Zeng W, Jiang J, Wu B, Chen C, Feng B, Zhang X. J Opt Soc Am B, 2000, 17: 764–768

    Article  CAS  Google Scholar 

  27. Ye N, Zeng WR, Wu BC, Chen CT. Z Krist-New Cryst Str, 1998, 213: 480

    Google Scholar 

  28. Hu ZG, Yoshimura M, Muramatsu K, Mori Y, Sasaki T. Jpn J Appl Phys, 2002, 41: L1131–L1133

    Article  CAS  Google Scholar 

  29. Zhao S, Kang L, Shen Y, Wang X, Asghar MA, Lin Z, Xu Y, Zeng S, Hong M, Luo J. J Am Chem Soc, 2016, 138: 2961–2964

    Article  CAS  PubMed  Google Scholar 

  30. Yu H, Young J, Wu H, Zhang W, Rondinelli JM, Halasyamani S. Adv Opt Mater, 2017, 5: 1700840

    Article  Google Scholar 

  31. Meng X, Liang F, Xia M, Lin Z. Inorg Chem, 2018, 57: 5669–5676

    Article  CAS  PubMed  Google Scholar 

  32. Wu H, Yu H, Pan S, Halasyamani PS. Inorg Chem, 2017, 56: 8755–8758

    Article  CAS  PubMed  Google Scholar 

  33. Iwai M, Kobayashi T, Furuya H, Mori Y, Sasaki T. Jpn J Appl Phys, 1997, 36: L276–L279

    Article  CAS  Google Scholar 

  34. Xie Z, Mutailipu M, He G, Han G, Wang Y, Yang Z, Zhang M, Pan S. Chem Mater, 2018, 30: 2414–2423

    Article  CAS  Google Scholar 

  35. Zhao S, Zhang G, Yao J, Wu Y. CrystEngComm, 2012, 14: 5209–5214

    Article  CAS  Google Scholar 

  36. Ye N, Stone-Sundberg JL, Hruschka MA, Aka G, Kong W, Keszler DA. Chem Mater, 2005, 17: 2687–2692

    Article  CAS  Google Scholar 

  37. Huang H, Yao J, Lin Z, Wang X, He R, Yao W, Zhai N, Chen C. Chem Mater, 2011, 23: 5457–5463

    Article  CAS  Google Scholar 

  38. Bruker. Program SAINT. Madison: Bruker AXS Inc., 2012

    Google Scholar 

  39. Sheldrick GM. Acta Crystlogr A Found Crystlogr, 2008, 64: 112–122

    Article  CAS  Google Scholar 

  40. Spek AL. J Appl Crystlogr, 2003, 36: 7–13

    Article  CAS  Google Scholar 

  41. Kurtz SK, Perry TT. J Appl Phys, 1968, 39: 3798–3813

    Article  CAS  Google Scholar 

  42. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC. Z Kristallogr, 2005, 220: 567–570

    Article  CAS  Google Scholar 

  43. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Phys Rev B, 1992, 46: 6671–6687

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  45. Monkhorst HJ, Pack JD. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

  46. Chen CT, Wang GL, Wang XY, Xu ZY. Appl Phys B, 2009, 97: 9–25

    Article  CAS  Google Scholar 

  47. Chen C, Wu Y, Li R. J Cryst Growth, 1990, 99: 790–798

    Article  CAS  Google Scholar 

  48. Brese NE, Okeeffe M. Sect B, 1991, 47: 192–197

    Google Scholar 

  49. Williams ER, Faller JE, Hill HA. Phys Rev Lett, 1971, 26: 721–724

    Article  Google Scholar 

  50. Huang C, Zhang JH, Hu CL, Xu X, Kong F, Mao JG. Inorg Chem, 2014, 53: 3847–3853

    Article  CAS  PubMed  Google Scholar 

  51. Feng JH, Hu CL, Xu X, Kong F, Mao JG. Inorg Chem, 2015, 54: 2447–2454

    Article  CAS  PubMed  Google Scholar 

  52. Xu X, Hu CL, Kong F, Zhang JH, Mao JG, Sun J. Inorg Chem, 2013, 52: 5831–5837

    Article  CAS  PubMed  Google Scholar 

  53. Mutailipu M, Zhang M, Wu H, Yang Z, Shen Y, Sun J, Pan S. Nat Commun, 2018, 9: 3089

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhao S, Gong P, Bai L, Xu X, Zhang S, Sun Z, Lin Z, Hong M, Chen C, Luo J. Nat Commun, 2014, 5: 1–7

    Google Scholar 

  55. Zhao S, Gong P, Luo S, Liu S, Li L, Asghar MA, Khan T, Hong M, Lin Z, Luo J. J Am Chem Soc, 2015, 137: 2207–2210

    Article  CAS  PubMed  Google Scholar 

  56. Chen C, Wu Y, Li R. Int Rev Phys Chem, 1989, 8: 65–91

    Article  Google Scholar 

  57. Jiang X, Zhao S, Lin Z, Luo J, Bristowe PD, Guan X, Chen C. J Mater Chem C, 2014, 2: 530–537

    Article  CAS  Google Scholar 

  58. Wu Y, Sasaki T, Nakai S, Yokotani A, Tang H, Chen C. Appl Phys Lett, 1993, 62: 2614–2615

    Article  CAS  Google Scholar 

  59. Li Z, Lin Z, Wu Y, Fu P, Wang Z, Chen C. Chem Mater, 2004, 16: 2906–2908

    Article  CAS  Google Scholar 

  60. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Rev Mod Phys, 1992, 64: 1045–1097

    Article  CAS  Google Scholar 

  61. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC. Z für Kristallographie — Crystline Mater, 2005, 220: 567–570

    Article  CAS  Google Scholar 

  62. Lin J, Lee MH, Liu ZP, Chen C, Pickard CJ. Phys Rev B, 1999, 60: 13380–13389

    Article  CAS  Google Scholar 

  63. Lin ZS, Kang L, Zheng T, He R, Huang H, Chen CT. Comput Mater Sci, 2012, 60: 99–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51972230, 22071179, 51890864, 61835014, 51802217, 51890865), the Natural Science Foundation of Tianjin (20JCJQJC00060, 19JCZDJC38200), Tianjin Science and Technology Plan Program (19ZYPTJC00070), and the National Key R&D Program of China (2016YFB0402103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongping Wu or Hongwei Yu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wu, H., Yu, H. et al. BaYOBO3: A deep-ultraviolet rare-earth oxy-borate with a large second harmonic generation response. Sci. China Chem. 64, 1184–1191 (2021). https://doi.org/10.1007/s11426-021-9982-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-9982-9

Navigation