Skip to main content
Log in

Stabilizing wide-bandgap halide perovskites through hydrogen bonding

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoo JJ, Wieghold S, Sponseller MC, Chua MR, Bertram SN, Hartono NTP, Tresback JS, Hansen EC, Correa-Baena JP, Bulović V, Buonassisi T, Shin SS, Bawendi MG. Energy Environ Sci, 2019, 12: 2192–2199

    Article  CAS  Google Scholar 

  2. Kim M, Kim GH, Lee TK, Choi IW, Choi HW, Jo Y, Yoon YJ, Kim JW, Lee J, Huh D, Lee H, Kwak SK, Kim JY, Kim DS. Joule, 2019, 3: 2179–2192

    Article  CAS  Google Scholar 

  3. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photonics, 2019, 13: 460–466

    Article  CAS  Google Scholar 

  4. Liu Y, Akin S, Pan L, Uchida R, Arora N, Milić JV, Hinderhofer A, Schreiber F, Uhl AR, Zakeeruddin SM, Hagfeldt A, Dar MI, Grätzel M. Sci Adv, 2019, 5: eaaw2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi HW, Lee J, Bae JH, Kwak SK, Kim DS, Yang C. Science, 2020, 369: 1615–1620

    Article  CAS  PubMed  Google Scholar 

  6. Kim G, Min H, Lee KS, Lee DY, Yoon SM, Seok SI. Science, 2020, 370: 108–112

    Article  CAS  PubMed  Google Scholar 

  7. Xiao K, Lin R, Han Q, Hou Y, Qin Z, Nguyen HT, Wen J, Wei M, Yeddu V, Saidaminov MI, Gao Y, Luo X, Wang Y, Gao H, Zhang C, Xu J, Zhu J, Sargent EH, Tan H. Nat Energy, 2020, 5: 870–880

    Article  CAS  Google Scholar 

  8. Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope MA, Eickemeyer FT, Kim M, Yoon YJ, Choi IW, Darwich BP, Choi SJ, Jo Y, Lee JH, Walker B, Zakeeruddin SM, Emsley L, Rothlisberger U, Hagfeldt A, Kim DS, Grätzel M, Kim JY. Nature, 2021, 592: 381–385

    Article  CAS  PubMed  Google Scholar 

  9. Best Research-Cell Efficiencies can be found under https://www.nrel.gov/pv/cell-efficiency.html

  10. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K. Nat Energy, 2017, 2: 17032

    Article  CAS  Google Scholar 

  11. Shockley W, Queisser HJ. J Appl Phys, 1961, 32: 510–519

    Article  CAS  Google Scholar 

  12. Hörantner MT, Leijtens T, Ziffer ME, Eperon GE, Christoforo MG, McGehee MD, Snaith HJ. ACS Energy Lett, 2017, 2: 2506–2513

    Article  CAS  Google Scholar 

  13. Eperon GE, Hörantner MT, Snaith HJ. Nat Rev Chem, 2017, 1: 0095

    Article  CAS  Google Scholar 

  14. Wang Y, Gu S, Liu G, Zhang L, Liu Z, Lin R, Xiao K, Luo X, Shi J, Du J, Meng F, Li L, Liu Z, Tan H. Sci China Chem, 2021, 64: 2025–2034

    Article  CAS  Google Scholar 

  15. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Nano Lett, 2013, 13: 1764–1769

    Article  CAS  PubMed  Google Scholar 

  16. Unger EL, Kegelmann L, Suchan K, Sörell D, Korte L, Albrecht S. J Mater Chem A, 2017, 5: 11401–11409

    Article  CAS  Google Scholar 

  17. Hoke ET, Slotcavage DJ, Dohner ER, Bowring AR, Karunadasa HI, McGehee MD. Chem Sci, 2015, 6: 613–617

    Article  CAS  PubMed  Google Scholar 

  18. Slotcavage DJ, Karunadasa HI, McGehee MD. ACS Energy Lett, 2016, 1: 1199–1205

    Article  CAS  Google Scholar 

  19. Brennan MC, Draguta S, Kamat PV, Kuno M. ACS Energy Lett, 2017, 3: 204–213

    Article  CAS  Google Scholar 

  20. Yang TCJ, Fiala P, Jeangros Q, Ballif C. Joule, 2018, 2: 1421–1436

    Article  CAS  Google Scholar 

  21. Wang Z, Shi Z, Li T, Chen Y, Huang W. Angew Chem Int Ed, 2017, 56: 1190–1212

    Article  CAS  Google Scholar 

  22. Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis FD, Boyen HG. Adv Energy Mater, 2015, 5: 1500477

    Article  CAS  Google Scholar 

  23. Pearson AJ, Eperon GE, Hopkinson PE, Habisreutinger SN, Wang JTW, Snaith HJ, Greenham NC. Adv Energy Mater, 2016, 6: 1600014

    Article  CAS  Google Scholar 

  24. Wang Z, McMeekin DP, Sakai N, van Reenen S, Wojciechowski K, Patel JB, Johnston MB, Snaith HJ. Adv Mater, 2017, 29: 1604186

    Article  CAS  Google Scholar 

  25. Tao L, Qiu J, Sun B, Wang X, Ran X, Song L, Shi W, Zhong Q, Li P, Zhang H, Xia Y, Müller-Buschbaum P, Chen Y. J Energy Chem, 2021, 61: 395–415

    Article  Google Scholar 

  26. McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Hörantner MT, Haghighirad A, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ. Science, 2016, 351: 151–155

    Article  CAS  PubMed  Google Scholar 

  27. Shen H, Duong T, Peng J, Jacobs D, Wu N, Gong J, Wu Y, Karuturi SK, Fu X, Weber K, Xiao X, White TP, Catchpole K. Energy Environ Sci, 2018, 11: 394–406

    Article  CAS  Google Scholar 

  28. Tan H, Che F, Wei M, Zhao Y, Saidaminov MI, Todorović P, Broberg D, Walters G, Tan F, Zhuang T, Sun B, Liang Z, Yuan H, Fron E, Kim J, Yang Z, Voznyy O, Asta M, Sargent EH. Nat Commun, 2018, 9: 3100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yang Z, Rajagopal A, Jo SB, Chueh CC, Williams S, Huang CC, Katahara JK, Hillhouse HW, Jen AKY. Nano Lett, 2016, 16: 7739–7747

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Jia YH, Fang HH, Loi MA, Xie FY, Gong L, Qin MC, Lu XH, Wong CP, Zhao N. Adv Funct Mater, 2018, 28: 1803130

    Article  CAS  Google Scholar 

  31. Kim DH, Muzzillo CP, Tong J, Palmstrom AF, Larson BW, Choi C, Harvey SP, Glynn S, Whitaker JB, Zhang F, Li Z, Lu H, van Hest MFAM, Berry JJ, Mansfield LM, Huang Y, Yan Y, Zhu K. Joule, 2019, 3: 1734–1745

    Article  CAS  Google Scholar 

  32. Chen B, Yu Z, Liu K, Zheng X, Liu Y, Shi J, Spronk D, Rudd PN, Holman Z, Huang J. Joule, 2019, 3: 177–190

    Article  CAS  Google Scholar 

  33. Kim J, Saidaminov MI, Tan H, Zhao Y, Kim Y, Choi J, Jo JW, Fan J, Quintero-Bermudez R, Yang Z, Quan LN, Wei M, Voznyy O, Sargent EH. Adv Mater, 2018, 30: 1706275

    Article  CAS  Google Scholar 

  34. Zhou Y, Wang F, Cao Y, Wang JP, Fang HH, Loi MA, Zhao N, Wong CP. Adv Energy Mater, 2017, 7: 1701048

    Article  CAS  Google Scholar 

  35. Gharibzadeh S, Nejand BA, Jakoby M, Abzieher T, Hauschild D, Moghadamzadeh S, Schwenzer JA, Brenner P, Schmager R, Haghighirad AA, Weinhardt L, Lemmer U, Richards BS, Howard IA, Paetzold UW. Adv Energy Mater, 2019, 9: 1803699

    Article  CAS  Google Scholar 

  36. Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor FH, Xue DJ, Chen B, Chen H, Bahrami B, Chowdhury AH, Johnston A, Baek SW, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli AJ, Allen TG, Van Kerschaver E, Saidaminov MI, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent EH. Science, 2020, 367: 1135–1140

    Article  CAS  PubMed  Google Scholar 

  37. Yang Z, Babu BH, Wu S, Liu T, Fang S, Xiong Z, Han L, Chen W. Sol RRL, 2019, 4: 1900257

    Article  Google Scholar 

  38. Chao L, Niu T, Gao W, Ran C, Song L, Chen Y, Huang W. Adv Mater, 2021, 33: 2005410

    Article  CAS  Google Scholar 

  39. Sun B, Wang W, Lu H, Chao L, Gu H, Tao L, Hu J, Li B, Zong X, Shi W, Ran X, Zhang H, Xia Y, Li P, Chen Y. J Phys Chem C, 2021, 125: 6555–6563

    Article  CAS  Google Scholar 

  40. Chao L, Xia Y, Li B, Xing G, Chen Y, Huang W. Chem, 2019, 5: 995–1006

    Article  CAS  Google Scholar 

  41. Wang Z, Lin Q, Chmiel FP, Sakai N, Herz LM, Snaith HJ. Nat Energy, 2017, 2: 17135

    Article  CAS  Google Scholar 

  42. Brivio F, Walker AB, Walsh A. APL Mater, 2013, 1: 042111

    Article  CAS  Google Scholar 

  43. Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Science, 2015, 347: 519–522

    Article  CAS  PubMed  Google Scholar 

  44. Wu G, Li X, Zhou J, Zhang J, Zhang X, Leng X, Wang P, Chen M, Zhang D, Zhao K, Liu SF, Zhou H, Zhang Y. Adv Mater, 2019, 31: 1903889

    Article  CAS  Google Scholar 

  45. Qin T, Wu F, Mu Y, Long Y, Zhu L, Zhao J, Chi Z. Sci China Chem, 2021, 64: 127–133

    Article  CAS  Google Scholar 

  46. Qiu J, Lin Y, Ran X, Wei Q, Gao X, Xia Y, Müller-Buschbaum P, Chen Y. Sci China Chem, 2021, 64: 1577–1585

    Article  CAS  Google Scholar 

  47. Singh T, Miyasaka T. Adv Energy Mater, 2018, 8: 1700677

    Article  CAS  Google Scholar 

  48. Huang D, Xie P, Pan Z, Rao H, Zhong X. J Mater Chem A, 2019, 7: 22420–22428

    Article  CAS  Google Scholar 

  49. Chen Y, Li N, Wang L, Li L, Xu Z, Jiao H, Liu P, Zhu C, Zai H, Sun M, Zou W, Zhang S, Xing G, Liu X, Wang J, Li D, Huang B, Chen Q, Zhou H. Nat Commun, 2019, 10: 1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Xue R, Zhang M, Luo D, Chen W, Zhu R, Yang YM, Li Y, Li Y. Sci China Chem, 2020, 63: 987–996

    Article  CAS  Google Scholar 

  51. Mahesh S, Ball JM, Oliver RDJ, McMeekin DP, Nayak PK, Johnston MB, Snaith HJ. Energy Environ Sci, 2020, 13: 258–267

    Article  CAS  Google Scholar 

  52. Gautam SK, Kim M, Miquita DR, Bourée JE, Geffroy B, Plantevin O. Adv Funct Mater, 2020, 30: 2002622

    Article  CAS  Google Scholar 

  53. Zhang W, Saliba M, Moore DT, Pathak SK, Hörantner MT, Stergiopoulos T, Stranks SD, Eperon GE, Alexander-Webber JA, Abate A, Sadhanala A, Yao S, Chen Y, Friend RH, Estroff LA, Wiesner U, Snaith HJ. Nat Commun, 2015, 6: 6142

    Article  CAS  PubMed  Google Scholar 

  54. Chao L, Niu T, Gu H, Yang Y, Wei Q, Xia Y, Hui W, Zuo S, Zhu Z, Pei C, Li X, Zhang J, Fang J, Xing G, Li H, Huang X, Gao X, Ran C, Song L, Fu L, Chen Y, Huang W. Research, 2020, 2020: 2616345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cao J, Jing X, Yan J, Hu C, Chen R, Yin J, Li J, Zheng N. J Am Chem Soc, 2016, 138: 9919–9926

    Article  CAS  PubMed  Google Scholar 

  56. Hui W, Yang Y, Xu Q, Gu H, Feng S, Su Z, Zhang M, Wang J, Li X, Fang J, Xia F, Xia Y, Chen Y, Gao X, Huang W. Adv Mater, 2020, 32: 1906374

    Article  CAS  Google Scholar 

  57. Wang X, Ran X, Liu X, Gu H, Zuo S, Hui W, Lu H, Sun B, Gao X, Zhang J, Xia Y, Chen Y, Huang W. Angew Chem Int Ed, 2020, 59: 13354–13361

    Article  CAS  Google Scholar 

  58. Hui W, Chao L, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y, Huang W. Science, 2021, 371: 1359–1364

    Article  CAS  PubMed  Google Scholar 

  59. Wang ZK, Li M, Yang YG, Hu Y, Ma H, Gao XY, Liao LS. Adv Mater, 2016, 28: 6695–6703

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (91833304 and 51972172), Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars, China (BK20200034), the Young 1000 Talents Global Recruitment Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Du, X., Hu, J. et al. Stabilizing wide-bandgap halide perovskites through hydrogen bonding. Sci. China Chem. 65, 1650–1660 (2022). https://doi.org/10.1007/s11426-021-1306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1306-4

Keywords

Navigation