Skip to main content
Log in

An end-capped strategy for crystalline polymer donor to improve the photovoltaic performance of non-fullerene solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2022

This article has been updated

Abstract

The effects of end-capped modifications of a polymer donor with high molecular weight on non-fullerene solar cells are largely ignored, even if the chain-end-functionalized method of conjugated polymers is an effective strategy in modulating polymeric optical-electronic properties. In this study, we design and synthesize an end-capped polymer, PM6TPO, via a reaction with the parent polymer PM6. Meanwhile, the conventional detection methods of X-ray photoelectron spectroscopy (XPS), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), and 1H nuclear magnetic resonance (1H NMR) were replaced by simple solution-based inductively coupled plasma-mass spectrometry (ICP-MS) to evaluate the end-capped efficacy of PM6TPO. By introducing end-capped groups on a high molecular weight polymer donor, we could finely tune the aggregated behavior, strengthen the miscibility between the donor and acceptor without sacrificing the strong aggregated properties, and reduce the non-radiative recombination with a lower energy loss. Therefore, the PM6TPO-based organic solar cell (OSC) realized a higher open-circuit voltage of 0.843 V and PCE of 17.26% than that of the non-end-capped parent polymer, PM6 (0.824 V and 16.21%, respectively). This work not only provides a straightforward method for verifying the end-capped efficacy of a high molecular weight polymer but also indicates a new research direction for improving the photovoltaic performance of non-fullerene-based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Li Y. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  2. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027

    Article  CAS  Google Scholar 

  3. Cui Y, Yao H, Hong L, Zhang T, Xu Y, Xian K, Gao B, Qin J, Zhang J, Wei Z, Hou J. Adv Mater, 2019, 31: 1808356

    Article  Google Scholar 

  4. Zheng B, Huo L, Li Y. NPG Asia Mater, 2020, 12: 3

    Article  CAS  Google Scholar 

  5. Xu W, Ma X, Son JH, Jeong SY, Niu L, Xu C, Zhang S, Zhou Z, Gao J, Woo HY, Zhang J, Wang J, Zhang F. Small, 2022, 18: 2104215

    Article  CAS  Google Scholar 

  6. Xu C, Jin K, Xiao Z, Zhao Z, Ma X, Wang X, Li J, Xu W, Zhang S, Ding L, Zhang F. Adv Funct Mater, 2021, 31: 2107934

    Article  CAS  Google Scholar 

  7. Xia R, Brabec CJ, Yip HL, Cao Y. Joule, 2019, 3: 2241–2254

    Article  CAS  Google Scholar 

  8. Ma LK, Chen Y, Chow PCY, Zhang G, Huang J, Ma C, Zhang J, Yin H, Hong Cheung AM, Wong KS, So SK, Yan H. Joule, 2020, 4: 1486–1500

    Article  CAS  Google Scholar 

  9. Xu Y, Yao H, Ma L, Hong L, Li J, Liao Q, Zu Y, Wang J, Gao M, Ye L, Hou J. Angew Chem Int Ed, 2020, 59: 9004–9010

    Article  CAS  Google Scholar 

  10. Fukuda K, Yu K, Someya T. Adv Energy Mater, 2020, 10: 2000765

    Article  CAS  Google Scholar 

  11. Lee JW, Sun C, Kim DJ, Ha MY, Han D, Park JS, Wang C, Lee WB, Kwon SK, Kim TS, Kim YH, Kim BJ. ACS Nano, 2021, 15: 19970–19980

    Article  CAS  Google Scholar 

  12. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  13. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872

    Article  Google Scholar 

  14. Wu J, Li G, Fang J, Guo X, Zhu L, Guo B, Wang Y, Zhang G, Arunagiri L, Liu F, Yan H, Zhang M, Li Y. Nat Commun, 2020, 11: 4612

    Article  CAS  Google Scholar 

  15. Zheng B, Huo L. Small Methods, 2021, 5: 2100493

    Article  CAS  Google Scholar 

  16. Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020–3033

    Article  CAS  Google Scholar 

  17. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  18. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  19. Liu T, Zhang Y, Shao Y, Ma R, Luo Z, Xiao Y, Yang T, Lu X, Yuan Z, Yan H, Chen Y, Li Y. Adv Funct Mater, 2020, 30: 2000456

    Article  CAS  Google Scholar 

  20. Zhu C, Meng L, Zhang J, Qin S, Lai W, Qiu B, Yuan J, Wan Y, Huang W, Li Y. Adv Mater, 2021, 33: 2100474

    Article  CAS  Google Scholar 

  21. Miteva T, Meisel A, Knoll W, Nothofer HG, Scherf U, Müller DC, Meerholz K, Yasuda A, Neher D. Adv Mater, 2001, 13: 565–570

    Article  Google Scholar 

  22. Shim C, Kim M, Ihn SG, Choi YS, Kim Y, Cho K. Chem Commun, 2012, 48: 7206–7208

    Article  CAS  Google Scholar 

  23. Gibson GL, Gao D, Jahnke AA, Sun J, Tilley AJ, Seferos DS. J Mater Chem A, 2014, 2: 14468–14480

    Article  CAS  Google Scholar 

  24. Koldemir U, Puniredd SR, Wagner M, Tongay S, McCarley TD, Kamenov GD, Müllen K, Pisula W, Reynolds JR. Macromolecules, 2015, 48: 6369–6377

    Article  CAS  Google Scholar 

  25. Khiev S, Derue L, Ayenew G, Medlej H, Brown R, Rubatat L, Hiorns RC, Wantz G, Dagron-Lartigau C. Polym Chem, 2013, 4: 4145–4150

    Article  CAS  Google Scholar 

  26. Wang L, Qiao Z, Gao C, Liu J, Zhang ZG, Li X, Li Y, Wang H. Macromolecules, 2016, 49: 3723–3732

    Article  CAS  Google Scholar 

  27. Saxena S, Marlow P, Subbiah J, Colsmann A, Wong WWH, Jones DJ. ACS Appl Mater Interfaces, 2021, 13: 36044–36052

    Article  CAS  Google Scholar 

  28. Park JK, Jo J, Seo JH, Moon JS, Park YD, Lee K, Heeger AJ, Bazan GC. Adv Mater, 2011, 23: 2430–2435

    Article  CAS  Google Scholar 

  29. Wang Q, Zhang B, Liu L, Chen Y, Qu Y, Zhang X, Yang J, Xie Z, Geng Y, Wang L, Wang F. J Phys Chem C, 2012, 116: 21727–21733

    Article  CAS  Google Scholar 

  30. Robb MJ, Montarnal D, Eisenmenger ND, Ku SY, Chabinyc ML, Hawker CJ. Macromolecules, 2013, 46: 6431–6438

    Article  CAS  Google Scholar 

  31. Ma W, Yang G, Jiang K, Carpenter JH, Wu Y, Meng X, McAfee T, Zhao J, Zhu C, Wang C, Ade H, Yan H. Adv Energy Mater, 2015, 5: 1501400

    Article  Google Scholar 

  32. Kim JS, Lee Y, Lee JH, Park JH, Kim JK, Cho K. Adv Mater, 2010, 22: 1355–1360

    Article  CAS  Google Scholar 

  33. Baycan Koyuncu F, Davis AR, Carter KR. Chem Mater, 2012, 24: 4410–4416

    Article  CAS  Google Scholar 

  34. Guttman CM, Flynn KM, Wallace WE, Kearsley AJ. Macromolecules, 2009, 42: 1695–1702

    Article  CAS  Google Scholar 

  35. Chen H, He M, Pei J, He H. Anal Chem, 2003, 75: 6531–6535

    Article  CAS  Google Scholar 

  36. Harris JD, Carter KR. Polym Chem, 2018, 9: 1132–1138

    Article  CAS  Google Scholar 

  37. Mao Z, Vakhshouri K, Jaye C, Fischer DA, Fernando R, De-Longchamp DM, Gomez ED, Sauvé G. Macromolecules, 2013, 46: 103–112

    Article  CAS  Google Scholar 

  38. Lunn DJ, Discekici EH, Read de Alaniz J, Gutekunst WR, Hawker CJ. J Polym Sci Part A-Polym Chem, 2017, 55: 2903–2914

    Article  CAS  Google Scholar 

  39. Schroot R, Schubert US, Jäger M. Macromolecules, 2017, 50: 1319–1330

    Article  CAS  Google Scholar 

  40. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    Article  CAS  Google Scholar 

  41. Makino Y, Nakazato T. J Anal At Spectrom, 2021, 36: 1895–1899

    Article  CAS  Google Scholar 

  42. Zheng B, Qi F, Zhang Y, Zhang M, Gao P, Liu F, Li T, Wei D, Wan M, Chen G, Huo L, Jiang L. Adv Energy Mater, 2021, 11: 2003954

    Article  CAS  Google Scholar 

  43. Xue X, Zheng B, Zhang Y, Zhang M, Wei D, Liu F, Wan M, Liu J, Chen G, Huo L. Adv Energy Mater, 2020, 10: 2002142

    Article  CAS  Google Scholar 

  44. Li X, Weng K, Ryu HS, Guo J, Zhang X, Xia T, Fu H, Wei D, Min J, Zhang Y, Woo HY, Sun Y. Adv Funct Mater, 2019, 30: 1906809

    Article  Google Scholar 

  45. Xue X, Weng K, Qi F, Zhang Y, Wang Z, Ali J, Wei D, Sun Y, Liu F, Wan M, Liu J, Huo L. Adv Energy Mater, 2019, 9: 1802686

    Article  Google Scholar 

  46. Cai Y, Li Y, Wang R, Wu H, Chen Z, Zhang J, Ma Z, Hao X, Zhao Y, Zhang C, Huang F, Sun Y. Adv Mater, 2021, 33: 2101733

    Article  CAS  Google Scholar 

  47. Comyn J. Int J Adhes Adhes, 1992, 12: 145–149

    Article  CAS  Google Scholar 

  48. Nilsson S, Bernasik A, Budkowski A, Moons E. Macromolecules, 2007, 40: 8291–8301

    Article  CAS  Google Scholar 

  49. Zheng B, Huo L. Sci China Chem, 2021, 64: 358–384

    Article  CAS  Google Scholar 

  50. Yu H, Pan M, Sun R, Agunawela I, Zhang J, Li Y, Qi Z, Han H, Zou X, Zhou W, Chen S, Lai JYL, Luo S, Luo Z, Zhao D, Lu X, Ade H, Huang F, Min J, Yan H. Angew Chem Int Ed, 2021, 60: 10137–10146

    Article  CAS  Google Scholar 

  51. Sun R, Wu Y, Guo J, Luo Z, Yang C, Min J. Sci China Chem, 2020, 63: 1246–1255

    Article  CAS  Google Scholar 

  52. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  Google Scholar 

  53. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV. Phys Rev B, 2010, 81: 125204

    Article  Google Scholar 

  54. Li S, Ye L, Zhao W, Zhang S, Ade H, Hou J. Adv Energy Mater, 2017, 7: 1700183

    Article  Google Scholar 

  55. Zhang Z, Wang H, Yu J, Sun R, Xu J, Yang L, Geng R, Cao J, Du F, Min J, Liu F, Tang W. Chem Mater, 2020, 32: 1297–1307

    Article  CAS  Google Scholar 

  56. Chen Y, Jiang C, Wang J, Tang A, Zhang B, Liu X, Chen X, Wei Z, Zhou E. J Mater Chem C, 2021, 9: 11163–11171

    Article  CAS  Google Scholar 

  57. Baisinger L, Andrés Castán JM, Simón Marqués P, Londi G, Göhler C, Deibel C, Beljonne D, Cabanetos C, Blanchard P, Benduhn J, Spoltore D, Leo K. ChemSusChem, 2021, 14: 3622–3631

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Beijing Natural Science Foundation (2212032), the National Natural Science Foundation of China (21774003, 51873221, 52073292, 51673207, 51373183), the Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing Municipal Science & Technology Commission (Z181100004418012), and the Beihang University Youth Talent Support Program (YWF-18-BJ-J-218).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingxia Wang or Lijun Huo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1205_MOESM1_ESM.pdf

An End-capped Strategy for Crystalline Polymer Donor to Improve the Photovoltaic Performance of Non-fullerene Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Yue, Y., Ni, J. et al. An end-capped strategy for crystalline polymer donor to improve the photovoltaic performance of non-fullerene solar cells. Sci. China Chem. 65, 964–972 (2022). https://doi.org/10.1007/s11426-021-1205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1205-5

Keywords

Navigation