Skip to main content
Log in

Altering elastic-plastic mechanical response of a series of isostructural metal-organic complex crystals

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The mechanically compliant single crystals have attracted massive attention. However, the related reports on the single crystals composed of metal-organic complexes remain scarce. In this study, we synthesized a series of isostructural single crystals of ZnII complexes that manifest mechanical bending in response to external stress. In these crystals, the mechanical responses can be shifted between elastic bending and plastic bending by the control of the intermolecular interactions through a rational structural modification in the substituent group of pyridine ligands. As the molecular reorientation corresponding to ligand variation elongates the interfacial distance between molecular slip planes, and the structural disorder of ligands disperses the interplanar intermolecular interactions, the shift from elastic bending to plastic bending of the metal-organic complex-based single crystal was realized. The different mechanical responses of single crystals were comprehensively investigated both experimentally and theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naumov P, Chizhik S, Panda MK, Nath NK, Boldyreva E. Chem Rev, 2015, 115: 12440–12490

    Article  CAS  PubMed  Google Scholar 

  2. Xu P, Cui B, Bu Y, Wang H, Guo X, Wang P, Shen YR, Tong L. Science, 2021, 373: 187–192

    Article  CAS  PubMed  Google Scholar 

  3. Das S, Mondal A, Reddy CM. Chem Soc Rev, 2020, 49: 8878–8896

    Article  CAS  PubMed  Google Scholar 

  4. Thompson AJ, Chamorro Orué AI, Nair AJ, Price JR, McMurtrie J, Clegg JK. Chem Soc Rev, 2021, 50: 11725–11740

    Article  CAS  PubMed  Google Scholar 

  5. Naumov P, Karothu DP, Ahmed E, Catalano L, Commins P, Mahmoud Halabi J, Al-Handawi MB, Li L. J Am Chem Soc, 2020, 142: 13256–13272

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Lu Z, Tang B, Liu H, Liu H, Zhang Z, Ye K, Zhang H. Angew Chem Int Ed, 2020, 59: 23117–23121

    Article  CAS  Google Scholar 

  7. Annadhasan M, Basak S, Chandrasekhar N, Chandrasekar R. Adv Opt Mater, 2020, 8: 2000959

    Article  CAS  Google Scholar 

  8. Hayashi S, Koizumi T. Angew Chem Int Ed, 2016, 55: 2701–2704

    Article  CAS  Google Scholar 

  9. Kenny EP, Jacko AC, Powell BJ. Angew Chem Int Ed, 2019, 58: 15082–15088

    Article  CAS  Google Scholar 

  10. Tang Q, Tong Y, Zheng Y, He Y, Zhang Y, Dong H, Hu W, Hassenkam T, Bjørnholm T. Small, 2011, 7: 189–193

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Chang Z, Zhang J, Gong J. Angew Chem Int Ed, 2021, 60: 22424–22431

    Article  CAS  Google Scholar 

  12. Saha S, Mishra MK, Reddy CM, Desiraju GR. Acc Chem Res, 2018, 51: 2957–2967

    Article  CAS  PubMed  Google Scholar 

  13. Reddy CM, Gundakaram RC, Basavoju S, Kirchner MT, Padmanabhan KA, Desiraju GR. Chem Commun, 2005, 3945–3947

  14. Commins P, Karothu DP, Naumov P. Angew Chem Int Ed, 2019, 58: 10052–10060

    Article  CAS  Google Scholar 

  15. Panda MK, Ghosh S, Yasuda N, Moriwaki T, Mukherjee GD, Reddy CM, Naumov P. Nat Chem, 2015, 7: 65–72

    Article  CAS  PubMed  Google Scholar 

  16. Worthy A, Grosjean A, Pfrunder MC, Xu Y, Yan C, Edwards G, Clegg JK, McMurtrie JC. Nat Chem, 2017, 10: 65–69

    Article  PubMed  CAS  Google Scholar 

  17. Thomas SP, Shi MW, Koutsantonis GA, Jayatilaka D, Edwards AJ, Spackman MA. Angew Chem Int Ed, 2017, 56: 8468–8472

    Article  CAS  Google Scholar 

  18. Zhang K, Sun CC, Liu Y, Wang C, Shi P, Xu J, Wu S, Gong J. Chem Mater, 2021, 33: 1053–1060

    Article  CAS  Google Scholar 

  19. Karothu DP, Mahmoud Halabi J, Ahmed E, Ferreira R, Spackman PR, Spackman MA, Naumov P. Angew Chem Int Ed, 2022, https://doi.org/10.1002/anie.202113988

  20. Reddy CM, Kirchner MT, Gundakaram RC, Padmanabhan KA, Desiraju GR. Chem Eur J, 2006, 12: 2222–2234

    Article  CAS  PubMed  Google Scholar 

  21. Liu H, Bian Z, Cheng Q, Lan L, Wang Y, Zhang H. Chem Sci, 2019, 10: 227–232

    Article  CAS  PubMed  Google Scholar 

  22. Commins P, Dippenaar AB, Li L, Hara H, Haynes DA, Naumov P. Chem Sci, 2021, 12: 6188–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy CM, Padmanabhan KA, Desiraju GR. Cryst Growth Des, 2006, 6: 2720–2731

    Article  CAS  Google Scholar 

  24. Liu H, Ye K, Zhang Z, Zhang H. Angew Chem Int Ed, 2019, 58: 19081–19086

    Article  CAS  Google Scholar 

  25. Ghosh S, Mishra MK, Kadambi SB, Ramamurty U, Desiraju GR. Angew Chem Int Ed, 2015, 54: 2674–2678

    Article  CAS  Google Scholar 

  26. Wang C, Sun CC. Cryst Growth Des, 2018, 18: 1909–1916

    Article  CAS  Google Scholar 

  27. Đaković M, Borovina M, Pisačić M, Aakeröy CB, Soldin Ž, Kukovec BM, Kodrin I. Angew Chem Int Ed, 2018, 57: 14801–14805

    Article  CAS  Google Scholar 

  28. Bhattacharya B, Michalchuk AAL, Silbernagl D, Rautenberg M, Schmid T, Feiler T, Reimann K, Ghalgaoui A, Sturm H, Paulus B, Emmerling F. Angew Chem Int Ed, 2020, 59: 5557–5561

    Article  CAS  Google Scholar 

  29. Mei L, An SW, Hu KQ, Wang L, Yu JP, Huang ZW, Kong XH, Xia CQ, Chai ZF, Shi WQ. Angew Chem Int Ed, 2020, 59: 16061–16068

    Article  CAS  Google Scholar 

  30. Rath BB, Vittal JJ. Chem Mater, 2021, 33: 4621–4627

    Article  CAS  Google Scholar 

  31. Brock AJ, Whittaker JJ, Powell JA, Pfrunder MC, Grosjean A, Parsons S, McMurtrie JC, Clegg JK. Angew Chem Int Ed, 2018, 57: 11325–11328

    Article  CAS  Google Scholar 

  32. Raju KB, Ranjan S, Vishnu VS, Bhattacharya M, Bhattacharya B, Mukhopadhyay AK, Reddy CM. Cryst Growth Des, 2018, 18: 3927–3937

    Article  CAS  Google Scholar 

  33. Mukherjee A, Desiraju GR. IUCrJ, 2013, 1: 49–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pisačić M, Biljan I, Kodrin I, Popov N, Soldin Ž, Đaković M. Chem Mater, 2021, 33: 3660–3668

    Article  CAS  Google Scholar 

  35. Devarapalli R, Kadambi SB, Chen CT, Krishna GR, Kammari BR, Buehler MJ, Ramamurty U, Reddy CM. Chem Mater, 2019, 31: 1391–1402

    Article  CAS  Google Scholar 

  36. Saha S, Desiraju GR. J Am Chem Soc, 2017, 139: 1975–1983

    Article  CAS  PubMed  Google Scholar 

  37. Chu X, Lu Z, Tang B, Liu B, Ye K, Zhang H. J Phys Chem Lett, 2020, 11: 5433–5438

    Article  CAS  PubMed  Google Scholar 

  38. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA. J Appl Crystlogr, 2021, 54: 1006–1011

    Article  CAS  Google Scholar 

  39. Frisch MJ. Gaussian 09. Gaussian, Inc., 2009

  40. Becke AD. J Chem Phys, 1993, 98: 5648–5652

    Article  CAS  Google Scholar 

  41. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. J Appl Crystlogr, 2009, 42: 339–341

    Article  CAS  Google Scholar 

  42. Lipkowski J. J Coord Chem, 1990, 22: 153–158

    Article  CAS  Google Scholar 

  43. Krishna GR, Devarapalli R, Lal G, Reddy CM. J Am Chem Soc, 2016, 138: 13561–13567

    Article  CAS  PubMed  Google Scholar 

  44. Ghosh S, Reddy CM. Angew Chem Int Ed, 2012, 51: 10319–10323

    Article  CAS  Google Scholar 

  45. Mondal A, Bhattacharya B, Das S, Bhunia S, Chowdhury R, Dey S, Reddy CM. Angew Chem Int Ed, 2020, 59: 10971–10980

    Article  CAS  Google Scholar 

  46. Pejov L, Panda MK, Moriwaki T, Naumov P. J Am Chem Soc, 2017, 139: 2318–2328

    Article  CAS  PubMed  Google Scholar 

  47. Turner MJ, Thomas SP, Shi MW, Jayatilaka D, Spackman MA. Chem Commun, 2015, 51: 3735–3738

    Article  CAS  Google Scholar 

  48. Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Angew Chem Int Ed, 2020, 59: 13852–13858

    Article  CAS  Google Scholar 

  49. Neumann T, Jess I, Näther C. Acta Crystlogr E Cryst Commun, 2016, 72: 922–925

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071009, 21701013, 21671161, 21971016) and the Beijing Institute of Technology Research Fund Program for Young Scholars. The data of Micro-IR spectroscopy were collected at the station of beamline BL01B of Nation Synchrotron Radiation Laboratory (NSRL) of Hefei Light Source, CHINA. The technical support from the staff at the Analysis & Testing Center, Beijing Institute of Technology is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zi-Shuo Yao or Jun Tao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Altering Elastic-Plastic Mechanical Response of a Series of Isostructural Metal-Organic Complexes Crystals

checkCIF/PLATON report

Supplementary material, approximately 1.08 MB.

Supplementary material, approximately 1.37 MB.

Supplementary material, approximately 329 KB.

Supplementary material, approximately 786 KB.

Supplementary material, approximately 887 KB.

Supplementary material, approximately 559 KB.

Supplementary material, approximately 215 KB.

Supplementary material, approximately 184 KB.

Supplementary material, approximately 593 KB.

Supplementary material, approximately 200 KB.

Supplementary material, approximately 477 KB.

Supplementary material, approximately 443 KB.

Supplementary material, approximately 512 KB.

Supplementary material, approximately 356 KB.

Supplementary material, approximately 258 KB.

Supplementary material, approximately 224 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Sun, XP., Wang, SD. et al. Altering elastic-plastic mechanical response of a series of isostructural metal-organic complex crystals. Sci. China Chem. 65, 710–718 (2022). https://doi.org/10.1007/s11426-021-1203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1203-3

Keywords

Navigation