Skip to main content
Log in

Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The closed-loop recycling concept of the polymer wastes into building-block chemicals is attractive, but the closed-loop recycling of copolymers enabled by energy-efficient chemical recycling and cost-effective separations is still facing great challenges. Herein, for the first time, a one-pot sequential copolymerization of γ-butyrolactone (γ-BL) and p-dioxanone (PDO) using an economical ureas/alkoxides catalytic system is conducted to synthesize biodegradable and chemically recyclable poly-(γ-butyrolactone)-block-poly(p-dioxanone) (PγBL-b-PPDO) diblock copolymers with well-defined and controlled structures. The composition-dependent properties of PγBL-b-PPDO copolymers, including thermal properties and crystallization behavior, are investigated. The results show that the thermal stability and crystalline ability of PγBL are enhanced observably by introducing the PPDO block. Significantly, the PγBL-b-PPDO copolymers can be depolymerized efficiently into the corresponding co-monomers with a yield of over 95% by simply low-temperature pyrolysis under vacuum. Moreover, γ-BL and PDO monomers are selectively separated with an isolated purity of about 99% based on the difference in their physicochemical properties. Subsequently, their repolymerization is realized to obtain the copolymers with nearly identical structures and thermostability, demonstrating the closed-loop recycling of copolymers, i.e., polymerization-depolymerization-repolymerization. This research provides important guidance for the design of novel sustainable polymers towards more efficient chemical recycling, separation and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong M, Chen EYX. Green Chem, 2017, 19: 3692–3706

    Article  CAS  Google Scholar 

  2. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E. Chem Rev, 2016, 116: 1637–1669

    Article  CAS  Google Scholar 

  3. Sheldon RA, Norton M. Green Chem, 2020, 22: 6310–6322

    Article  CAS  Google Scholar 

  4. Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R. Chem Rev, 2016, 116: 1540–1599

    Article  CAS  Google Scholar 

  5. Schröder K, Matyjaszewski K, Noonan KJT, Mathers RT. Green Chem, 2014, 16: 1673–1686

    Article  Google Scholar 

  6. Gandini A. Macromolecules, 2008, 41: 9491–9504

    Article  CAS  Google Scholar 

  7. Zhang X, Fevre M, Jones GO, Waymouth RM. Chem Rev, 2018, 118: 839–885

    Article  CAS  Google Scholar 

  8. Schneiderman DK, Hillmyer MA. Macromolecules, 2017, 50: 3733–3749

    Article  CAS  Google Scholar 

  9. Garcia JM, Robertson ML. Science, 2017, 358: 870–872

    Article  CAS  Google Scholar 

  10. Eagan JM, Xu J, Di Girolamo R, Thurber CM, Macosko CW, La-Pointe AM, Bates FS, Coates GW. Science, 2017, 355: 814–816

    Article  CAS  Google Scholar 

  11. Quaranta E, Sgherza D, Tartaro G. Green Chem, 2017, 19: 5422–5434

    Article  CAS  Google Scholar 

  12. Schneiderman DK, Vanderlaan ME, Mannion AM, Panthani TR, Batiste DC, Wang JZ, Bates FS, Macosko CW, Hillmyer MA. ACS Macro Lett, 2016, 5: 515–518

    Article  CAS  Google Scholar 

  13. Yang KK, Wang XL, Wang YZ. J Macromol Sci Part C-Polym Rev, 2002, 42: 373–398

    Article  Google Scholar 

  14. Hong M, Chen EYX. Nat Chem, 2016, 8: 42–49

    Article  CAS  Google Scholar 

  15. Fan Y, Nishida H, Shirai Y, Endo T. Green Chem, 2003, 5: 575–579

    Article  CAS  Google Scholar 

  16. Ügdüler S, Van Geem KM, Denolf R, Roosen M, Mys N, Ragaert K, De Meester S. Green Chem, 2020, 22: 5376–5394

    Article  Google Scholar 

  17. Zhu JB, Chen EYX. Angew Chem Int Ed, 2018, 57: 12558–12562

    Article  CAS  Google Scholar 

  18. Shi C, Li ZC, Caporaso L, Cavallo L, Falivene L, Chen EYX. Chem, 2021, 7: 670–685

    Article  CAS  Google Scholar 

  19. Häußler M, Eck M, Rothauer D, Mecking S. Nature, 2021, 590: 423–427

    Article  Google Scholar 

  20. Shi C, McGraw ML, Li ZC, Cavallo L, Falivene L, Chen EYX. Sci Adv, 2020, 6: eabc0495

    Article  CAS  Google Scholar 

  21. Abel BA, Snyder RL, Coates GW. Science, 2021, 373: 783–789

    Article  CAS  Google Scholar 

  22. Mangeon C, Renard E, Thevenieau F, Langlois V. Mater Sci Eng-C, 2017, 80: 760–770

    Article  CAS  Google Scholar 

  23. Bednarek M, Kubisa P. Polym Chem, 2019, 10: 1848–1872

    Article  CAS  Google Scholar 

  24. Jaffredo CG, Chapurina Y, Guillaume SM, Carpentier JF. Angew Chem Int Ed, 2014, 53: 2687–2691

    Article  CAS  Google Scholar 

  25. Hong M, Chen EYX. Macromolecules, 2014, 47: 3614–3624

    Article  CAS  Google Scholar 

  26. Wilson JA, Hopkins SA, Wright PM, Dove AP. Macromolecules, 2015, 48: 950–958

    Article  CAS  Google Scholar 

  27. Wilson JA, Hopkins SA, Wright PM, Dove AP. ACS Macro Lett, 2016, 5: 346–350

    Article  CAS  Google Scholar 

  28. Xu YC, Ren WM, Zhou H, Gu GG, Lu XB. Macromolecules, 2017, 50: 3131–3142

    Article  CAS  Google Scholar 

  29. Yang KK, Wang XL, Wang YZ, Huang HX. J Appl Polym Sci, 2006, 100: 2331–2335

    Article  CAS  Google Scholar 

  30. Albuerne J, Márquez L, Müller AJ, Raquez JM, Degée P, Dubois P, Castelletto V, Hamley IW. Macromolecules, 2003, 36: 1633–1644

    Article  CAS  Google Scholar 

  31. Aleman C, Betran O, Casanovas J, Houk KN, Hall Jr. HK. J Org Chem, 2009, 74: 6237–6244

    Article  CAS  Google Scholar 

  32. Zhao N, Ren C, Li H, Li Y, Liu S, Li Z. Angew Chem Int Ed, 2017, 56: 12987–12990

    Article  CAS  Google Scholar 

  33. Walther P, Frey W, Naumann S. Polym Chem, 2018, 9: 3674–3683

    Article  CAS  Google Scholar 

  34. Zhang CJ, Hu LF, Wu HL, Cao XH, Zhang XH. Macromolecules, 2018, 51: 8705–8711

    Article  CAS  Google Scholar 

  35. Shen Y, Zhao Z, Li Y, Liu S, Liu F, Li Z. Polym Chem, 2019, 10: 1231–1237

    Article  CAS  Google Scholar 

  36. Lin L, Han D, Qin J, Wang S, Xiao M, Sun L, Meng Y. Macromolecules, 2018, 51: 9317–9322

    Article  CAS  Google Scholar 

  37. Lin B, Waymouth RM. J Am Chem Soc, 2017, 139: 1645–1652

    Article  CAS  Google Scholar 

  38. Olsén P, Odelius K, Albertsson AC. Biomacromolecules, 2016, 17: 699–709

    Article  Google Scholar 

  39. Qu C, He J. Sci China Chem, 2015, 58: 1651–1662

    Article  CAS  Google Scholar 

  40. Shen Y, Zhang J, Zhao N, Liu F, Li Z. Polym Chem, 2018, 9: 2936–2941

    Article  CAS  Google Scholar 

  41. Zhao Z, Shen Y, Kou X, Shi J, Wang R, Liu F, Li Z. Macromolecules, 2020, 53: 3380–3389

    Article  CAS  Google Scholar 

  42. Li M, Wang S, Li F, Zhou L, Lei L. Polym Chem, 2020, 11: 6591–6598

    Article  CAS  Google Scholar 

  43. Nishida H, Yamashita M, Hattori N, Endo T, Tokiwa Y. Polym Degrad Stab, 2000, 70: 485–496

    Article  Google Scholar 

  44. Zhu JB, Watson EM, Tang J, Chen EYX. Science, 2018, 360: 398–403

    Article  CAS  Google Scholar 

  45. Christensen PR, Scheuermann AM, Loeffler KE, Helms BA. Nat Chem, 2019, 11: 442–448

    Article  CAS  Google Scholar 

  46. Liu X, Hong M, Falivene L, Cavallo L, Chen EYX. Macromolecules, 2019, 52: 4570–4578

    Article  CAS  Google Scholar 

  47. Sangroniz A, Zhu JB, Tang X, Etxeberria A, Chen EYX, Sardon H. Nat Commun, 2019, 10: 3559

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFC1100702), the National Natural Science Foundation of China (U19A2095), the Sichuan Science and Technology Program (2017SZDZX0015) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wu or Yu-Zhong Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2021_1196_MOESM1_ESM.pdf

Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YT., Wu, G., Chen, SC. et al. Controlled synthesis and closed-loop chemical recycling of biodegradable copolymers with composition-dependent properties. Sci. China Chem. 65, 943–953 (2022). https://doi.org/10.1007/s11426-021-1196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1196-7

Keywords

Navigation