Skip to main content
Log in

Recent developments in the synthesis of sequence controlled polymers

  • Mini Reviews
  • SPECIAL TOPIC Progress in Synthetic Polymer Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of sequence controlled polymers received increasing interest in polymer science. This mini review focuses on the principle and methods developed to control the sequence in polymer products from various polymerization mechanisms and processes. Typical examples are discussed to explicate the progress in this research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lutz JF. Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym Chem, 2010; 1: 55–62

    Article  CAS  Google Scholar 

  2. Lutz JF, Börner HG. Precision macromolecular chemistry. Macromol Rapid Commun, 2011; 32: 113–114

    Article  CAS  Google Scholar 

  3. Badi N, ChanSeng D, Lutz JF. Microstructure control: an underestimated parameter in recent polymer design. Macromol Chem Phys, 2013; 214: 135–142

    Article  CAS  Google Scholar 

  4. Lutz JF, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science, 2013, 341: 1238149–1238158

    Article  Google Scholar 

  5. Lutz JF. Aperiodic copolymers. ACS Macro Lett, 2014; 3: 1020–1023

    Article  CAS  Google Scholar 

  6. Badi N, Lutz JF. Sequence control in polymer synthesis. Chem Soc Rev, 2009; 38: 3383–3390

    Article  CAS  Google Scholar 

  7. Li ZL, Wang CH, Du FS, Li ZC. Sequence-regulated polymerization. Chin J Polym Bull, 2014: 13–22

    Google Scholar 

  8. Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc, 1963; 85: 2149–2154

    Article  CAS  Google Scholar 

  9. Ouchi M, Badi N, Lutz JF, Sawamoto M. Single-chain technology using discrete synthetic macromolecules. Nat Chem, 2011, 3: 917–924

    Article  CAS  Google Scholar 

  10. Mutlu H, Lutz JF. Reading polymers: sequencing of natural and synthetic macromolecules. Angew Chem Int Ed, 2014, 53: 13010–13019

    Article  CAS  Google Scholar 

  11. Lutz JF. Writing on polymer chains. Acc Chem Res, 2013, 46: 2696–2705

    Article  CAS  Google Scholar 

  12. Colquhoun H, Lutz JF. Information-containing macromolecules. Nat Chem, 2014; 6: 455–456

    Article  CAS  Google Scholar 

  13. ChanSeng D, Zamfir M, Lutz JF. Polymer-chain encoding: synthesis of highly complex monomer sequence patterns by using automated protocols. Angew Chem Int Ed, 2012, 51: 12254–12257

    Article  CAS  Google Scholar 

  14. Deng XX, Li L, Li ZL, Lv A, Du FS, Li ZC. Sequence regulated poly(ester-amide)s based on passerini reaction. ACS Macro Lett, 2012; 1: 1300–1303

    Article  CAS  Google Scholar 

  15. Hibi Y, Ouchi M, Sawamoto M. Sequence-regulated radical polymerization with a metal-templated monomer: repetitive ABA sequence by double cyclopolymerization. Angew Chem Int Ed, 2011; 50: 7434–7437

    Article  CAS  Google Scholar 

  16. Satoh K, Matsuda M, Nagai K, Kamigaito M. AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide: an end-to-end sequence-regulated copolymer. J Am Chem Soc, 2010, 132: 10003–10005

    Article  CAS  Google Scholar 

  17. Satoh K, Ozawa S, Mizutani M, Nagai K, Kamigaito M. Sequenceregulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nat Commun, 2010, 1: 6

    Article  Google Scholar 

  18. Espeel P, Carrette LLG, Bury K, Capenberghs S, Martins JC, Du Prez FE, Madder A. Multifunctionalized sequence-defined oligomers from a single building block. Angew Chem Int Ed, 2013, 52: 13261–13264

    Article  CAS  Google Scholar 

  19. Solleder SC, Meier MAR. Sequence control in polymer chemistry through the passerini three-component reaction. Angew Chem Int Ed, 2014; 53: 711–714

    Article  CAS  Google Scholar 

  20. Trinh TT, Oswald L, ChanSeng D, Lutz JF. Synthesis of molecularly encoded oligomers using a chemoselective “AB+CD” iterative approach. Macromol Rapid Commun, 2014; 35: 141–145

    Article  CAS  Google Scholar 

  21. Sun J, Zuckermann RN. Peptoid polymers: a highly designable bioinspired material. ACS Nano, 2013; 7: 4715–4732

    Article  CAS  Google Scholar 

  22. Rosales AM, Murnen HK, Zuckermann RN, Segalman RA. Control of crystallization and melting behavior in sequence specific polypeptoids. Macromolecules, 2010; 43: 5627–5636

    Article  CAS  Google Scholar 

  23. Ueda M. Sequence control in one-step condensation polymerization. Prog Polym Sci, 1999; 24: 699–730

    Article  CAS  Google Scholar 

  24. Sumerlin BS, Vogt AP. Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules, 2010; 43: 1–13

    Article  CAS  Google Scholar 

  25. Chen Y, Guan Z. Bioinspired modular synthesis of elastin-mimic polymers to probe the mechanism of elastin elasticity. J Am Chem Soc, 2010; 132: 4577–4579

    Article  CAS  Google Scholar 

  26. Yu TB, Bai JZ, Guan Z. Cycloaddition-promoted self-assembly of a polymer into well-defined-sheets and hierarchical nanofibrils. Angew Chem Int Ed, 2009; 48: 1097–1101

    Article  CAS  Google Scholar 

  27. Berthet MA, Zarafshani Z, Pfeifer S, Lutz JF. Facile synthesis of functional periodic copolymers: a step toward polymer-based molecular arrays. Macromolecules, 2010; 43: 44–50

    Article  CAS  Google Scholar 

  28. Wang CH, Song ZY, Deng XX, Zhang LJ, Du FS, Li ZC. Combination of ATRA and ATRC for the synthesis of periodic vinyl copolymers. Macromol Rapid Commun, 2014; 35: 474–478

    Article  CAS  Google Scholar 

  29. Satoh K, Mizutani M, Kamigaito M. Metal-catalyzed radical polyaddition as a novel polymer synthetic route. Chem Commun, 2007: 1260–1262

    Google Scholar 

  30. Zhang C, Wang Q. Step-growth radical addition-coupling polymerization (RACP) for synthesis of alternating copolymers. Macromol Rapid Commun, 2011; 32: 1180–1184

    Article  CAS  Google Scholar 

  31. Zhang C, Ling J, Wang Q. Radical addition-coupling polymerization (RACP) toward periodic copolymers. Macromolecules, 2011; 44: 8739–8743

    Article  CAS  Google Scholar 

  32. Li J, Stayshich RM, Meyer TY. Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers. J Am Chem Soc, 2011; 133: 6910–6913

    Article  CAS  Google Scholar 

  33. Stayshich RM, Meyer TY. New insights into poly(lactic-co-glycolic acid) microstructure: using repeating sequence copolymers to decipher complex NMR and thermal behavior. J Am Chem Soc, 2010, 132: 10920–10934

    Article  CAS  Google Scholar 

  34. Li J, Rothstein SN, Little SR, Edenborn HM, Meyer TY. The effect of monomer order on the hydrolysis of biodegradable poly(lactic-coglycolic acid) repeating sequence copolymers. J Am Chem Soc, 2012, 134: 16352–16359

    Article  CAS  Google Scholar 

  35. Yan JJ, Wang D, Wu DC, You YZ. Synthesis of sequence-ordered polymers via sequential addition of monomers in one pot. Chem Commun, 2013; 49: 6057–6059

    Article  CAS  Google Scholar 

  36. Yu L, Wang LH, Hu ZT, You YZ, Wu DC, Hong CY. Sequential Michael addition thiol-ene and radical-mediated thiol-ene reactions in one-pot produced sequence-ordered polymers. Polym Chem, 2015; 6: 1527–1532

    Article  CAS  Google Scholar 

  37. Lv A, Deng XX, Li L, Li ZL, Wang YZ, Du FS, Li ZC. Facile synthesis of multi-block copolymers containing poly(ester-amide) segments with an ordered side group sequence. Polym Chem, 2013; 4: 3659–3662

    Article  CAS  Google Scholar 

  38. Solleder SC, Wetzel KS, Meier MAR. Dual side chain control in the synthesis of novel sequence-defined oligomers through the Ugi four-component reaction. Polym Chem, 2015; 6: 3201–3204

    Article  CAS  Google Scholar 

  39. Rzaev ZMO. Complex-radical alternating copolymerization. Prog Polym Sci, 2000; 25: 163–217

    Article  CAS  Google Scholar 

  40. Brulé E, Guo J, Coates GW, Thomas CM. Metal-catalyzed synthesis of alternating copolymers. Macromol Rapid Commun, 2011; 32: 169–185

    Article  Google Scholar 

  41. Lessard B, Maric M. One-step poly(styrene-alt-maleic anhydride)- block-poly(styrene) copolymers with highly alternating styrene/ maleic anhydride sequences are possible by nitroxide-mediated polymerization. Macromolecules, 2010; 43: 879–885

    Article  CAS  Google Scholar 

  42. Chen GQ, Wu ZQ, Wu JR, Li ZC, Li FM. Synthesis of alternating copolymers of N-substituted maleimides with styrene via atom transfer radical polymerization. Macromolecules, 2000; 33: 232–234

    Article  CAS  Google Scholar 

  43. Shan GR, Huang ZM, Weng ZX, Pan ZR. A new model of mechanism and treatment of kinetics for styrene/N-phenylmaleimide copolymerization. Macromolecules, 1997; 30: 1279–1284

    Article  CAS  Google Scholar 

  44. Zhang M, Liu H, Shao W, Miao K, Zhao Y. Synthesis and properties of multicleavable amphiphilic dendritic comblike and toothbrushlike copolymers comprising alternating PEG and PCL grafts. Macromolecules, 2013; 46: 1325–1336

    Article  CAS  Google Scholar 

  45. Jiang X, Zhang M, Li S, Shao W, Zhao Y. Facile synthesis and versatile topological transformation of mono-cleavable symmetric starlike terpolymers. Chem Commun, 2012; 48: 9906–9908

    Article  CAS  Google Scholar 

  46. O’Shea JP, Solovyeva V, Guo XR, Zhao JP, Hadjichristidis N, Rodionov VO. Sequence-controlled copolymers of 2, 3, 4, 5-pentafluorostyrene: mechanistic insight and application to organocatalysis. Polym Chem, 2014; 5: 698–701

    Article  Google Scholar 

  47. Kirci B, Lutz JF, Matyjaszewski K. Synthesis of well-defined alternating copolymers poly(methyl methacrylate-alt-styrene) by RAFT polymerization in the presence of lewis acid. Macromolecules, 2002; 35: 2448–2451

    Article  CAS  Google Scholar 

  48. Bianchini C, Meli A. Alternating copolymerization of carbon monoxide and olefins by single-site metal catalysis. Coord Chem Rev, 2002; 225: 35–66

    Article  CAS  Google Scholar 

  49. Coates GW, Moore DR. Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed, 2004; 43: 6618–6639

    Article  CAS  Google Scholar 

  50. Jeske RC, DiCiccio AM, Coates GW. Alternating copolymerization of epoxides and cyclic anhydrides: an improved route to aliphatic polyesters. J Am Chem Soc, 2007, 129: 11330–11331

    Article  CAS  Google Scholar 

  51. Kramer JW, Treitler DS, Dunn EW, Castro PM, Roisnel T, Thomas CM, Coates GW. Polymerization of enantiopure monomers using syndiospecific catalysts: a new approach to sequence control in polymer synthesis. J Am Chem Soc, 2009, 131: 16042–16044

    Article  CAS  Google Scholar 

  52. Ovitt TM, Coates GW. Stereoselective ring-opening polymerization of meso-lactide: synthesis of syndiotactic poly(lactic acid). J Am Chem Soc, 1999; 121: 4072–4073

    Article  CAS  Google Scholar 

  53. Liu B, Wang X, Pan Y, Lin F, Wu C, Qu J, Luo Y, Cui D. Unprecedented 3, 4-isoprene and cis-1, 4-butadiene copolymers with controlled sequence distribution by single yttrium cationic species. Macromolecules, 2014; 47: 8524–8530

    Article  CAS  Google Scholar 

  54. Hisano M, Takeda K, Takashima T, Jin Z, Shiibashi A, Matsumoto A. Sequence-controlled radical polymerization of N-substituted maleimides with 1-methylenebenzocycloalkanes and the characterization of the obtained copolymers with excellent thermal resistance and transparency. Macromolecules, 2013; 46: 3314–3323

    Article  CAS  Google Scholar 

  55. Matsuda M, Satoh K, Kamigaito M. Periodically functionalized and grafted copolymers via 1:2-sequence-regulated radical copolymerization of naturally occurring functional limonene and maleimide derivatives. Macromolecules, 2013; 46: 5473–5482

    Article  CAS  Google Scholar 

  56. Lutz JF, Schmidt BVKJ, Pfeifer S. Tailored polymer microstructures prepared by atom transfer radical copolymerization of styrene and N-substituted maleimides. Macromol Rapid Commun, 2011; 32: 127–135

    Article  CAS  Google Scholar 

  57. Srichan S, Mutlu H, Badi N, Lutz JF. Precision PEGylated polymers obtained by sequence-controlled copolymerization and postpolymerization modification. Angew Chem Int Ed, 2014; 53: 9231–9235

    Article  CAS  Google Scholar 

  58. Shishkan O, Zamfir M, Gauthier MA, Borner HG, Lutz JF. Complex single-chain polymer topologies locked by positionable twin disulfide cyclic bridges. Chem Commun, 2014; 50: 1570–1572

    Article  CAS  Google Scholar 

  59. Roy RK, Lutz JF. Compartmentalization of single polymer chains by stepwise intramolecular cross-linking of sequence-controlled macromolecules. J Am Chem Soc, 2014, 136: 12888–12891

    Article  CAS  Google Scholar 

  60. Natalello A, Hall JN, Eccles EAL, Kimani SM, Hutchings LR. Kinetic control of monomer sequence distribution in living anionic copolymerisation. Macromol Rapid Commun, 2011; 32: 233–237

    Article  CAS  Google Scholar 

  61. Hutchings LR, Brooks PP, Parker D, Mosely JA, Sevinc S. Monomer sequence control via living anionic copolymerization: synthesis of alternating, statistical, and telechelic copolymers and sequence analy sis by MALDI tof mass spectrometry. Macromolecules, 2015; 48: 610–628

    Article  CAS  Google Scholar 

  62. Moatsou D, Hansell CF, O’Reilly RK. Precision polymers: a kinetic approach for functional poly(norbornenes). Chem Sci, 2014; 5: 2246–2250

    Article  CAS  Google Scholar 

  63. Martinez H, Ren N, Matta ME, Hillmyer MA. Ring-opening metathesis polymerization of 8-membered cyclic olefins. Polym Chem, 2014; 5: 3507–3532

    Article  CAS  Google Scholar 

  64. Zhang J, Matta ME, Hillmyer MA. Synthesis of sequence-specific vinyl copolymers by regioselective ROMP of multiply substituted cyclooctenes. ACS Macro Lett, 2012; 1: 1383–1387

    Article  CAS  Google Scholar 

  65. Kobayashi S, Pitet LM, Hillmyer MA. Regio- and stereoselective ring-opening metathesis polymerization of 3-substituted cyclooctenes. J Am Chem Soc, 2011; 133: 5794–5797

    Article  CAS  Google Scholar 

  66. Rojas G, Inci B, Wei Y, Wagener KB. Precision polyethylene: changes in morphology as a function of alkyl branch size. J Am Chem Soc, 2009, 131: 17376–17386

    Article  CAS  Google Scholar 

  67. Baughman TW, Chan CD, Winey KI, Wagener KB. Synthesis and morphology of well-defined poly(ethylene-co-acrylic acid) copolymers. Macromolecules, 2007; 40: 6564–6571

    Article  CAS  Google Scholar 

  68. Few CS, Wagener KB, Thompson DL. Systematic studies of morphological changes of precision polyethylene. Macromol Rapid Commun, 2014; 35: 123–132

    Article  CAS  Google Scholar 

  69. Li ZL, Li L, Deng XX, Zhang LJ, Dong BT, Du FS, Li ZC. Periodic vinyl copolymers containing-butyrolactone via ADMET polymerization of designed diene monomers with built-in sequence. Macromolecules, 2012; 45: 4590–4598

    Article  CAS  Google Scholar 

  70. Li J, He J. Synthesis of sequence-regulated polymers: alternating polyacetylene through regioselective anionic polymerization of butadiene derivatives. ACS Macro Lett, 2015, 372–376

    Google Scholar 

  71. Minoda M, Sawamoto M, Higashimura T. Sequence-regulated oligomers and polymers by living cationic polymerization. 2. Principle of sequence regulation and synthesis of sequence-regulated oligomers of functional vinyl ethers and styrene derivatives. Macromolecules, 1990; 23: 4889–4895

    Article  CAS  Google Scholar 

  72. Houshyar S, Keddie DJ, Moad G, Mulder RJ, Saubern S, Tsanaktsidis J. The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units. Polym Chem, 2012; 3: 1879–1889

    Article  CAS  Google Scholar 

  73. Vandenbergh J, Reekmans G, Adriaensens P, Junkers T. Synthesis of sequence controlled acrylate oligomers via consecutive RAFT monomer additions. Chem Commun, 2013, 49: 10358–10360

    Article  CAS  Google Scholar 

  74. Tong XM, Guo BH, Huang YB. Toward the synthesis of sequencecontrolled vinyl copolymers. Chem Commun, 2011; 47: 1455–1457

    Article  CAS  Google Scholar 

  75. Brummelhuis N. Controlling monomer-sequence using supramolecular templates. Polym Chem, 2015; 6: 654–667

    Article  Google Scholar 

  76. Ida S, Ouchi M, Sawamoto M. Template-assisted selective radical addition toward sequence-regulated polymerization: lariat capture of target monomer by template initiator. J Am Chem Soc, 2010, 132: 14748–14750

    Article  CAS  Google Scholar 

  77. Ida S, Terashima T, Ouchi M, Sawamoto M. Selective radical addition with a designed heterobifunctional halide: a primary study toward sequence-controlled polymerization upon template effect. J Am Chem Soc, 2009, 131: 10808–10809

    Article  CAS  Google Scholar 

  78. Hibi Y, Tokuoka S, Terashima T, Ouchi M, Sawamoto M. Design of ABdivinyl “template monomers” toward alternating sequence control in metal-catalyzed living radical polymerization. Polym Chem, 2011; 2: 341–347

    Article  CAS  Google Scholar 

  79. Kang Y, Lu A, Ellington A, Jewett MC, O’ Reilly RK. Effect of complementary nucleobase interactions on the copolymer composition of RAFT copolymerizations. ACS Macro Lett, 2013; 2: 581–586

    Article  CAS  Google Scholar 

  80. Pfeifer S, Zarafshani Z, Badi N, Lutz JF. Liquid-phase synthesis of block copolymers containing sequence-ordered segments. J Am Chem Soc, 2009; 131: 9195–9197

    Article  CAS  Google Scholar 

  81. Roy RK, Meszynska A, Laure C, Charles L, Verchin C, Lutz JF. Design and synthesis of digitally encoded polymers that can be decoded and erased. Nat Commun, 2015, 6: 7237

    Article  CAS  Google Scholar 

  82. Hartmann L. Polymers for control freaks: sequence-defined poly- (amidoamine)s and their biomedical applications. Macromol Chem Phys, 2011; 212: 8–13

    Article  CAS  Google Scholar 

  83. Mosca S, Wojcik F, Hartmann L. Precise positioning of chiral building blocks in monodisperse, sequence-defined polyamides. Macromol Rapid Commun, 2011; 32: 197–202

    Article  CAS  Google Scholar 

  84. Hartmann L, Börner HG. Precision polymers: monodisperse, monomer-sequence-defined segments to target future demands of polymers in medicine. Adv Mater, 2009; 21: 3425–3431

    Article  CAS  Google Scholar 

  85. Kameyama A, Murakami Y, Nishikubo T. Transformation of poly(Saryl thioester) by insertion of thiiranes: a novel approach to achieve the synthesis of sequence-ordered polymers. Macromolecules, 1996; 29: 6676–6678

    Article  CAS  Google Scholar 

  86. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH. Multiblock polymers: panacea or pandora’s box? Science, 2012; 336: 434–440

    Article  CAS  Google Scholar 

  87. Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A. Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci, 2005; 30: 725–782

    Article  CAS  Google Scholar 

  88. Matsuo Y, Konno R, Ishizone T, Goseki R, Hirao A. Precise synthesis of block polymers composed of three or more blocks by specially designed linking methodologies in conjunction with living anionic polymerization system. Polymers, 2013; 5: 1012–1040

    Article  Google Scholar 

  89. Takada K, Ito T, Kitano K, Tsuchida S, Takagi Y, Chen Y, Satoh T, Kakuchi T. Synthesis of homopolymers, diblock copolymers, and multiblock polymers by organocatalyzed group transfer polymerization of various acrylate monomers. Macromolecules, 2015, 48: 511–519

    Article  CAS  Google Scholar 

  90. Anastasaki A, Nikolaou V, Pappas GS, Zhang Q, Wan C, Wilson P, Davis TP, Whittaker MR, Haddleton DM. Photoinduced sequencecontrol via one pot living radical polymerization of acrylates. Chem Sci, 2014; 5: 3536–3542

    Article  CAS  Google Scholar 

  91. Soeriyadi AH, Boyer C, Nyström F, Zetterlund PB, Whittaker MR. High-order multiblock copolymers via iterative Cu(0)-mediated radical polymerizations (SET-LRP): toward biological precision. J Am Chem Soc, 2011, 133: 11128–11131

    Article  CAS  Google Scholar 

  92. Chen LF, He JP. Tri-block terpolymers with different sequences synthesized by combination of anionic and RAFT polymerizations. Acta Polym Sin, 2015: 871–883

    Google Scholar 

  93. Zhang C, Yang Y, He J. Direct transformation of living anionic polymerization into RAFT-based polymerization. Macromolecules, 2013; 46: 3985–3994

    Article  CAS  Google Scholar 

  94. Fournier D, Hoogenboom R, Schubert US. Clicking polymers: a straightforward approach to novel macromolecular architectures. Chem Soc Rev, 2007; 36: 1369–1380

    Article  CAS  Google Scholar 

  95. Lutz JF. 1, 3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed, 2007; 46: 1018–1025

    Article  CAS  Google Scholar 

  96. Lewandowski B, De Bo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, Gramlich PME, Heckmann D, Goldup SM, D’Souza DM, Fernandes AE, Leigh DA. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science, 2013; 339: 189–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junpo He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, C., He, J. Recent developments in the synthesis of sequence controlled polymers. Sci. China Chem. 58, 1651–1662 (2015). https://doi.org/10.1007/s11426-015-5476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5476-9

Keywords

Navigation