Skip to main content
Log in

Orthogonal carbazole-perylene bisimide pentad: a photoconversion-tunable photosensitizer with diversified excitation and excited-state relaxation pathways

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Integrating multiple photosensitive properties into an “all-in-one” photosensitizer (PS) shows great promise for the treatment of cancers owing to synergistic effect among them. However, the development of such PSs, especially those that need a single laser source, remains a challenge. Herein, we report an orchestration of electron donors and acceptors in a propeller-like pentad, PBI-4Cz, where four carbazole (Cz) units are covalently linked to the ortho-positions of the perylene bisimide (PBI) core. Strong intramolecular donor-acceptor interaction significantly quenches the luminescence and largely extends the absorption spectra to near-infrared region. Excited-state dynamics investigated via femto- and nano-second transient absorption spectroscopy revealed exclusive charge separation of the PBI-4Cz within initial 0.5 ps when photoexcited regardless of which intermediate is involved. Energy dissipation of the resulting charge-separated state (PBI•−-4Cz•−) is subjected to the toggle between intersystem-crossing toward excited triplet states and charge recombination toward ground states. Relative importance of the two pathways can be tuned by micro-environmental polarity, which endows PBI-4Cz remarkable performances of singlet-oxygen generation (>90.0%) in toluene and photothermal conversion (∼28.6%) in DMSO. Harnessing intrinsic photostability and excited-state processes of heavy-atom-free PBI derivatives not only holds a promise for multifunctional phototheranostics, but also provides a prototype for designing high-performance PSs with tunable photoconversion pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang Z, Chen X. Acc Chem Res, 2019, 52: 1245–1254

    Article  CAS  Google Scholar 

  2. Zhu M, Zhang H, Ran G, Mangel DN, Yao Y, Zhang R, Tan J, Zhang W, Song JX, Sessler JL, Zhang JL. J Am Chem Soc, 2021, 143: 7541–7552

    Article  CAS  Google Scholar 

  3. Liu Y, Teng L, Liu HW, Xu C, Guo H, Yuan L, Zhang XB, Tan W. Sci China Chem, 2019, 62: 1275–1285

    Article  CAS  Google Scholar 

  4. Wang Z, Huang L, Yan Y, El-Zohry AM, Toffoletti A, Zhao J, Barbon A, Dick B, Mohammed OF, Han G. Angew Chem Int Ed, 2020, 59: 16114–16121

    Article  CAS  Google Scholar 

  5. Tang B, Li WL, Chang Y, Yuan B, Wu Y, Zhang MT, Xu JF, Li J, Zhang X. Angew Chem Int Ed, 2019, 58: 15526–15531

    Article  CAS  Google Scholar 

  6. Yang Y, He P, Wang Y, Bai H, Wang S, Xu JF, Zhang X. Angew Chem Int Ed, 2017, 56: 16239–16242

    Article  CAS  Google Scholar 

  7. Zou Q, Abbas M, Zhao L, Li S, Shen G, Yan X. J Am Chem Soc, 2017, 139: 1921–1927

    Article  CAS  Google Scholar 

  8. Sadiq F, Wang Z, Hou Y, Zhao J, Elmali A, Escudero D, Karatay A. Dyes Pigments, 2021, 184: 108708

    Article  CAS  Google Scholar 

  9. Ortiz-Rodríguez LA, Hoehn SJ, Loredo A, Wang L, Xiao H, Crespo-Hernández CE. J Am Chem Soc, 2021, 143: 2676–2681

    Article  Google Scholar 

  10. Hu W, Zhang XF, Liu M. J Phys Chem C, 2021, 125: 5233–5242

    Article  CAS  Google Scholar 

  11. Pham TC, Heo S, Nguyen VN, Lee MW, Yoon J, Lee S. ACS Appl Mater Interfaces, 2021, 13: 13949–13957

    Article  CAS  Google Scholar 

  12. Xu W, Qi Y, Zhou K, Wang Z, Wang G, He G, Fang Y. Sci China Chem, 2020, 63: 526–533

    Article  CAS  Google Scholar 

  13. Nguyen VN, Qi S, Kim S, Kwon N, Kim G, Yim Y, Park S, Yoon J. J Am Chem Soc, 2019, 141: 16243–16248

    Article  CAS  Google Scholar 

  14. Nguyen VN, Yan Y, Zhao J, Yoon J. Acc Chem Res, 2021, 54: 207–220

    Article  CAS  Google Scholar 

  15. Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem Rev, 2016, 116: 962–1052

    Article  Google Scholar 

  16. Yang F, Wang X, Feng G, Ma J, Li C, Li J, Ma W, Li W. Sci China Chem, 2018, 61: 824–829

    Article  CAS  Google Scholar 

  17. Zhang L, Song I, Ahn J, Han M, Linares M, Surin M, Zhang HJ, Oh JH, Lin J. Nat Commun, 2021, 12: 142

    Article  CAS  Google Scholar 

  18. Barendt TA, Myers WK, Cornes SP, Lebedeva MA, Porfyrakis K, Marques I, Félix V, Beer PD. J Am Chem Soc, 2020, 142: 349–364

    Article  CAS  Google Scholar 

  19. Koch M, Myahkostupov M, Oblinsky DG, Wang S, Garakyaraghi S, Castellano FN, Scholes GD. J Am Chem Soc, 2017, 139: 5530–5537

    Article  CAS  Google Scholar 

  20. Wu Y, Young RM, Frasconi M, Schneebeli ST, Spenst P, Gardner DM, Brown KE, Würthner F, Stoddart JF, Wasielewski MR. J Am Chem Soc, 2015, 137: 13236–13239

    Article  CAS  Google Scholar 

  21. Zink-Lorre N, Font-Sanchis E, Seetharaman S, Karr PA, Sastre-Santos Á, D’Souza F, Fernández-Lázaro F. Chem Eur J, 2019, 25: 10123–10132

    Article  CAS  Google Scholar 

  22. Shang C, Wang G, Liu K, Jiang Q, Liu F, Chou PT, Fang Y. Angew Chem Int Ed, 2020, 59: 8579–8585

    Article  CAS  Google Scholar 

  23. Liu Q, Liu T, Fang Y. Langmuir, 2020, 36: 2155–2169

    Article  CAS  Google Scholar 

  24. Wang Z, Liu K, Chang X, Qi Y, Shang C, Liu T, Liu J, Ding L, Fang Y. ACS Appl Mater Interfaces, 2018, 10: 35647–35655

    Article  CAS  Google Scholar 

  25. Wang Z, Wang G, Chang X, Liu K, Qi Y, Shang C, Huang R, Liu T, Fang Y. Adv Funct Mater, 2019, 29: 1905295

    Article  CAS  Google Scholar 

  26. Liang N, Meng D, Wang Z. Acc Chem Res, 2021, 54: 961–975

    Article  CAS  Google Scholar 

  27. Battagliarin G, Li C, Enkelmann V, Müllen K. Org Lett, 2011, 13: 3012–3015

    Article  CAS  Google Scholar 

  28. Wu J, He D, Zhang L, Liu Y, Mo X, Lin J, Zhang HJ. Org Lett, 2017, 19: 5438–5441

    Article  CAS  Google Scholar 

  29. Yu Z, Wu Y, Peng Q, Sun C, Chen J, Yao J, Fu H. Chem Eur J, 2016, 22: 4717–4722

    Article  CAS  Google Scholar 

  30. Liu H, Wang Y, Mo W, Tang H, Cheng Z, Chen Y, Zhang S, Ma H, Li B, Li X. Adv Funct Mater, 2020, 30: 1910275

    Article  CAS  Google Scholar 

  31. Jalilov AS, Nilewski LG, Berka V, Zhang C, Yakovenko AA, Wu G, Kent TA, Tsai AL, Tour JM. ACS Nano, 2017, 11: 2024–2032

    Article  CAS  Google Scholar 

  32. Bayda-Smykaj M, Burdzinski G, Ludwiczak M, Hug GL, Marciniak B. J Phys Chem C, 2020, 124: 19522–19529

    Article  CAS  Google Scholar 

  33. Chen SJH, Schwartz M. Chem Phys Lett, 1985, 113: 112–116

    Article  CAS  Google Scholar 

  34. Wieder GM, Marcus RA. J Chem Phys, 1962, 37: 1835–1852

    Article  CAS  Google Scholar 

  35. Marcus RA. J Chem Phys, 1965, 43: 2658–2661

    Article  CAS  Google Scholar 

  36. Guo Y, Ma Z, Niu X, Zhang W, Tao M, Guo Q, Wang Z, Xia A. J Am Chem Soc, 2019, 141: 12789–12796

    Article  CAS  Google Scholar 

  37. Mako TL, Racicot JM, Levine M. Chem Rev, 2019, 119: 322–477

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (21820102005, 22132002), 111 project (B14041), the Fundamental Research Funds for the Central Universities of China (2019TS033, GK202001005 and GK202003034) and the Youth Innovation Team of Shaanxi Universities. We thank Dr. Junxue Liu and Dr. Shiping Wang for helps in measurements of transient absorption spectra, Manping Qian for measurements of cyclic voltammetry, Prof. Xiaobing Wang for helpful discussion on photosensitive properties of PBI-4Cz and Dr. Hongyue Wang for helpful discussions on the analysis of TAS data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taihong Liu or Yu Fang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2021_1154_MOESM1_ESM.docx

Orthogonal carbazole-perylene bisimide pentad: photoconversion-tunable photosensitizer with diversified excitation and excited-state relaxation pathways

checkCIF/PLATON report

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Sun, Y., Lin, S. et al. Orthogonal carbazole-perylene bisimide pentad: a photoconversion-tunable photosensitizer with diversified excitation and excited-state relaxation pathways. Sci. China Chem. 64, 2193–2202 (2021). https://doi.org/10.1007/s11426-021-1154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1154-0

Keywords

Navigation