Skip to main content
Log in

A new spirofluorene-based nonplanar PBI-dyad and its utilization in the film-based photo-production of singlet oxygen

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Traditional photosensitizers are predominantly based on various types of polypyrrole macrocycles, which are generally used in homogeneous and/or suspension states. In the present study, a new non-polypyrrole-based photosensitizer (LW-PBI) was developed via the introduction of a nonplanar spirofluorene into a derivative of perylene bisimides (PBI) containing two longalkyl chains. Photophysical studies demonstrated that the compound shows good solubility in common organic solvents, great photochemical stability, and high absorption efficiency in the visible light region. Due to containing of two energetically matchable, independent fluorescent units, the compound as prepared displays strong tendency to form non-fluorescent charge-separated states under light irradiation in polar solvents. Based on the merits, LW-PBI was examined for its catalytic property in the photo-production of singlet oxygen in film state. Luckily, the compound is an effective photosensitizer in the generation of the active oxygen species as verified by its unique reaction with uric acid (UA). Further studies revealed that the effective photo-production of singlet oxygen can be also realized via the utilization of a tiny and low-price LED lamp as a light source and as a film support. Detailed studies on the application of the conceptual device as a medical instrument for photodynamic therapy (PDT) are in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogilby PR. Chem Soc Rev, 2010, 39: 3181–3209

    Article  CAS  PubMed  Google Scholar 

  2. Davies MJ. Biochem Biophys Res Commun, 2003, 305: 761–770

    Article  CAS  PubMed  Google Scholar 

  3. Schweitzer C, Schmidt R. Chem Rev, 2003, 103: 1685–1758

    Article  CAS  PubMed  Google Scholar 

  4. DeRosa M, Robert JC. Coord Chem Rev, 2002, 233–234: 351–371

    Article  Google Scholar 

  5. Zhou Z, Song J, Tian R, Yang Z, Yu G, Lin L, Zhang G, Fan W, Zhang F, Niu G, Nie L, Chen X. Angew Chem Int Ed, 2017, 56: 6492–6496

    Article  CAS  Google Scholar 

  6. Liu YJ, Wang KZ. Eur J Inorg Chem, 2008, 33: 5214–5219

    Article  CAS  Google Scholar 

  7. Kostelanska M, Freisleben J, Backovska HZ, Mosko T, Vik R, Moravcova D, Hamacek A, Mosinger J, Holada K. J Biophotonics, 2019, 12: e201800340

    Article  CAS  PubMed  Google Scholar 

  8. Wu W, Shao X, Zhao J, Wu M. Adv Sci, 2017, 4: 1700113

    Article  CAS  Google Scholar 

  9. Mari C, Huang H, Rubbiani R, Schulze M, Würthner F, Chao H, Gasser G. Eur J Inorg Chem, 2017, 12: 1745–1752

    Article  CAS  Google Scholar 

  10. Jiang X, Zhu N, Zhao D, Ma Y. Sci China Chem, 2016, 59: 40–52

    Article  CAS  Google Scholar 

  11. Jensen RL, Arnbjerg J, Birkedal H, Ogilby PR. J Am Chem Soc, 2011, 133: 7166–7173

    Article  CAS  PubMed  Google Scholar 

  12. Ghogare AA, Greer A. Chem Rev, 2016, 116: 9994–10034

    Article  CAS  PubMed  Google Scholar 

  13. Xu D, You Y, Zeng F, Wang Y, Liang C, Feng H, Ma X. ACS Appl Mater Interfaces, 2018, 10: 15517–15523

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Lee S, Yoon J. Chem Soc Rev, 2018, 47: 1174–1188

    Article  CAS  PubMed  Google Scholar 

  15. Gayathri T, Vijayalakshmi A, Mangalath S, Joseph J, Rao NM, Singh SP. ACS Med Chem Lett, 2018, 9: 323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng M, Cui YX, Wang J, Zhang J, Zhu LN, Kong DM. ACS Appl Mater Interfaces, 2019, 11: 13158–13167

    Article  CAS  PubMed  Google Scholar 

  17. Li H, Zhao Y, Jia Y, Qu C, Li J. Chem Commun, 2019, 55: 15057–15060

    Article  CAS  Google Scholar 

  18. Wu C, Wang L, Tian Y, Guan X, Liu Q, Li S, Qin X, Yang H, Liu Y. ACS Appl Mater Interfaces, 2018, 10: 6942–6955

    Article  CAS  PubMed  Google Scholar 

  19. Kim J, Park W, Kim D, Lee ES, Lee DH, Jeong S, Park JM, Na K. Adv Funct Mater, 2019, 29: 1900084

    Article  CAS  Google Scholar 

  20. Awuah SG, Polreis J, Biradar V, You Y. Org Lett, 2011, 13: 3884–3887

    Article  CAS  PubMed  Google Scholar 

  21. Jiang W, Tan Y, Yin JF, Li H, Wu J, Wu Y, Wang DG, Gao L, Kuang GC. Colloid Surface A, 2019, 579: 123706

    Article  CAS  Google Scholar 

  22. Zhou X, Liu D, Wang T, Hu X, Guo J, Weerasinghe KC, Wang L, Li W. J Photochem Photobiol A-Chem, 2014, 274: 57–63

    Article  CAS  Google Scholar 

  23. Wu Y, Zhen Y, Ma Y, Zheng R, Wang Z, Fu H. J Phys Chem Lett, 2010, 1: 2499–2502

    Article  CAS  Google Scholar 

  24. Spenst P, Young RM, Wasielewski MR, Würthner F. Chem Sci, 2016, 7: 5428–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flamigni L, Zanelli A, Langhals H, Böck B. J Phys Chem A, 2012, 116: 1503–1509

    Article  CAS  PubMed  Google Scholar 

  26. Cui Y, Wu Y, Liu Y, Yang G, Liu L, Fu H, Li Z, Wang S, Wang Z, Chen Y. Dyes Pigments, 2013, 97: 129–133

    Article  CAS  Google Scholar 

  27. Semeraro P, Syrgiannis Z, Bettini S, Giancane G, Guerra F, Fraix A, Bucci C, Sortino S, Prato M, Valli L. J Colloid Interface Sci, 2019, 553: 390–401

    Article  CAS  PubMed  Google Scholar 

  28. Liu K, Shang C, Wang Z, Qi Y, Miao R, Liu K, Liu T, Fang Y. Nat Commun, 2018, 9: 1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi Y, Xu W, Kang R, Ding N, Wang Y, He G, Fang Y. Chem Sci, 2018, 9: 1892–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu Y, Xu W, He Q, Cheng J. Sci China Chem, 2016, 59: 3–15

    Article  CAS  Google Scholar 

  31. Schulze M, Steffen A, Würthner F. Angew Chem Int Ed, 2015, 54: 1570–1573

    Article  CAS  Google Scholar 

  32. Pfeifer D, Klimant I, Borisov SM. Chem Eur J, 2018, 24: 10711–10720

    Article  CAS  PubMed  Google Scholar 

  33. Kaufmann C, Bialas D, Stolte M, Würthner F. J Am Chem Soc, 2018, 140: 9986–9995

    Article  CAS  PubMed  Google Scholar 

  34. Grande V, Soberats B, Herbst S, Stepanenko V, Würthner F. Chem Sci, 2018, 9: 6904–6911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem Rev, 2016, 116: 962–1052

    Article  CAS  PubMed  Google Scholar 

  36. Nowak-Król A, Würthner F. Org Chem Front, 2019, 6: 1272–1318

    Article  Google Scholar 

  37. Gupta RK, Shankar Rao DS, Prasad SK, Achalkumar AS. Chem Eur J, 2018, 24: 3566–3575

    Article  CAS  PubMed  Google Scholar 

  38. Chen S, Slattum P, Wang C, Zang L. Chem Rev, 2015, 115: 11967–11998

    Article  CAS  PubMed  Google Scholar 

  39. Zhou X, Sun Q, Li W, Zhao Y, Luo Z, Zhang F, Yang C. Dyes Pigments, 2017, 146: 151–158

    Article  CAS  Google Scholar 

  40. Tan H, Long Y, Zhang J, Zhu J, Yang J, Yu J, Zhu W. Dyes Pigments, 2019, 162: 797–801

    Article  CAS  Google Scholar 

  41. Chang X, Zhou Z, Shang C, Wang G, Wang Z, Qi Y, Li ZY, Wang H, Cao L, Li X, Fang Y, Stang PJ. J Am Chem Soc, 2019, 141: 1757–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao J, Xie GH, Yin CR, Xie LH, Han CM, Chen RF, Xu H, Yi MD, Deng ZP, Chen SF, Zhao Y, Liu SY, Huang W. Chem Mater, 2011, 23: 5331–5339

    Article  CAS  Google Scholar 

  43. Guo Y, Ma Z, Niu X, Zhang W, Tao M, Guo Q, Wang Z, Xia A. J Am Chem Soc, 2019, 141: 12789–12796

    Article  CAS  PubMed  Google Scholar 

  44. Fang S, Zhou J, Zhou X, Wang C, Jiang N, Liu L, Xie Z. J Phys Chem C, 2019, 123: 23306–23311

    Article  CAS  Google Scholar 

  45. Wang Z, Wang G, Chang X, Liu K, Qi Y, Shang C, Huang R, Liu T, Fang Y. Adv Funct Mater, 2019, 1905295

  46. Colomban C, Fuertes-Espinosa C, Goeb S, Sallé M, Costas M, Blancafort L, Ribas X. Chem Eur J, 2018, 24: 4371–4381

    Article  CAS  PubMed  Google Scholar 

  47. Martins Estevão B, Cucinotta F, Hioka N, Cossi M, Argeri M, Paul G, Marchese L, Gianotti E. Phys Chem Chem Phys, 2015, 17: 26804–26812

    Article  CAS  PubMed  Google Scholar 

  48. Silva ÉR, Pavanelli ALS, Mostaço LB, Schaberle FA, Galembeck SE, Gonçalves PJ, Costa e Silva R, Ferreira LP, Nekipelova TD, Kostyukov AA, Radchenko AS, Shtil AA, Kuzmin VA, Borissevitch IE. J Photochem Photobiol A-Chem, 2017, 349: 42–48

    Article  CAS  Google Scholar 

  49. Bregnhøj M, Dichmann L, McLoughlin CK, Westberg M, Ogilby PR. Photochem Photobiol, 2019, 95: 202–210

    Article  CAS  PubMed  Google Scholar 

  50. Estopiñá-Durán S, Donnelly LJ, Mclean EB, Hockin BM, Slawin AMZ, Taylor JE. Chem Eur J, 2019, 25: 3950–3956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21527802, 2167313, 21820102005), 111 Project (B14041), Program for Changjiang Scholars and Innovative Research Team in University (IRT-14R33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Fang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Qi, Y., Zhou, K. et al. A new spirofluorene-based nonplanar PBI-dyad and its utilization in the film-based photo-production of singlet oxygen. Sci. China Chem. 63, 526–533 (2020). https://doi.org/10.1007/s11426-019-9676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9676-y

Keywords

Navigation