Skip to main content
Log in

Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

High-temperature proton-exchange membrane fuel cells (HT-PEMFCs) have shown a broad prospect of applications due to the enhanced reaction kinetics and simplified supporting system. However, the proton conductor, phosphoric acid, tends to poison the active sites of Pt, resulting in high Pt consumption. Herein, Pt nanoparticles anchored on SiO2-modified carbon nanotubes (CNT@SiO2-Pt) are prepared as high-performance cathode catalysts for HT-PEMFCs. The SiO2 in CNT@SiO2-Pt can induce the adsorption of phosphoric acid transferring from Pt active sites in the catalytic layer, avoiding the poisoning of the Pt, and the phosphate fixed by SiO2 provide a high-speed proton conduction highway for oxygen reduction reactions. Accordingly, The CNT@SiO2-Pt cathode achieve superior power density of 765 mW cm−2 (160 °C) and 1,061 mW cm−2 (220 °C) due to the rapid proton-coupled electron process and outstanding stability in HT-PEMFCs. This result provides a new road to resolve the phosphate poisoning for the commercialization of HT-PEMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N. Chem Rev, 2007, 107: 3904–3951

    Article  CAS  PubMed  Google Scholar 

  2. Stephens IEL, Rossmeisl J, Chorkendorff I. Science, 2016, 354: 1378–1379

    Article  CAS  PubMed  Google Scholar 

  3. Debe MK. Nature, 2012, 486: 43–51

    Article  CAS  PubMed  Google Scholar 

  4. Jayakumar A, Sethu SP, Ramos M, Robertson J, Al-Jumaily A. Ionics, 2015, 21: 1–18

    Article  CAS  Google Scholar 

  5. Kraytsberg A, Ein-Eli Y. Energy Fuels, 2014, 28: 7303–7330

    Article  CAS  Google Scholar 

  6. Li W, Wang D, Zhang Y, Tao L, Wang T, Zou Y, Wang Y, Chen R, Wang S. Adv Mater, 2020, 32: 1907879

    Article  CAS  Google Scholar 

  7. Kandlikar SG, Garofalo ML, Lu Z. Fuel Cells, 2011, 11: 814–823

    Article  CAS  Google Scholar 

  8. Yin L, Li Q, Wang T, Liu L, Chen W. Asian J Control, 2019, 21: 1796–1810

    Article  Google Scholar 

  9. Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK. Energy Convers Manage, 2018, 165: 602–627

    Article  CAS  Google Scholar 

  10. Baschuk JJ, Li X. Int J Energy Res, 2001, 25: 695–713

    Article  CAS  Google Scholar 

  11. Quartarone E, Mustarelli P. Energy Environ Sci, 2012, 5: 6436–6444

    Article  CAS  Google Scholar 

  12. Ergun D, Devrim Y, Bac N, Eroglu I. J Appl Polym Sci, 2012, 124: E267–E277

    Article  CAS  Google Scholar 

  13. Devrim Y, Albostan A, Devrim H. Int J Hydrogen Energy, 2018, 43: 18672–18681

    Article  CAS  Google Scholar 

  14. Cheng Y, Zhang J, Lu S, Kuang H, Bradley J, De Marco R, Aili D, Li Q, Cui CQ, Jiang SP. Int J Hydrogen Energy, 2018, 43: 22487–22499

    Article  CAS  Google Scholar 

  15. Rau M, Cremers C, Tübke J. Int J Hydrogen Energy, 2015, 40: 5439–5443

    Article  CAS  Google Scholar 

  16. Zhang C, Zhou W, Zhang L, Chan SH, Wang Y. Int J Hydrogen Energy, 2015, 40: 4666–4672

    Article  CAS  Google Scholar 

  17. Ramli ZAC, Kamarudin SK. Nanoscale Res Lett, 2018, 13: 410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mehmood A, Scibioh MA, Prabhuram J, An MG, Ha HY. J Power Sources, 2015, 297: 224–241

    Article  CAS  Google Scholar 

  19. Niaura G, Gaigalas AK, Vilker VL. J Phys Chem B, 1997, 101: 9250–9262

    Article  CAS  Google Scholar 

  20. Xie C, Niu Z, Kim D, Li M, Yang P. Chem Rev, 2020, 120: 1184–1249

    Article  CAS  PubMed  Google Scholar 

  21. Stamenkovic VR, Strmcnik D, Lopes PP, Markovic NM. Nat Mater, 2017, 16: 57–69

    Article  CAS  Google Scholar 

  22. Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang Q, Gu L, Merinov BV, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, GoddardIii WA, Huang Y, Duan X. Science, 2016, 354: 1414–1419

    Article  CAS  PubMed  Google Scholar 

  23. Tian X, Zhao X, Su YQ, Wang L, Wang H, Dang D, Chi B, Liu H, Hensen EJM, Lou XWD, Xia BY. Science, 2019, 366: 850–856

    Article  CAS  PubMed  Google Scholar 

  24. Lim JE, Lee UJ, Ahn SH, Cho EA, Kim HJ, Jang JH, Son H, Kim SK. Appl Catal B-Environ, 2015, 165: 495–502

    Article  CAS  Google Scholar 

  25. He Q, Shyam B, Nishijima M, Ramaker D, Mukerjee S. J Phys Chem C, 2013, 117: 4877–4887

    Article  CAS  Google Scholar 

  26. Kaserer S, Caldwell KM, Ramaker DE, Roth C. J Phys Chem C, 2013, 117: 6210–6217

    Article  CAS  Google Scholar 

  27. Sun Y, Cui L, Gong J, Zhang J, Xiang Y, Lu S. ACS Sustain Chem Eng, 2019, 7: 2955–2963

    Article  CAS  Google Scholar 

  28. Rosenthal J, Nocera DG. Acc Chem Res, 2007, 40: 543–553

    Article  CAS  PubMed  Google Scholar 

  29. Gautam RP, Lee YT, Herman GL, Moreno CM, Tse ECM, Barile CJ. Angew Chem Int Ed, 2018, 57: 13480–13483

    Article  CAS  Google Scholar 

  30. Tse ECM, Barile CJ, Kirchschlager NA, Li Y, Gewargis JP, Zimmerman SC, Hosseini A, Gewirth AA. Nat Mater, 2016, 15: 754–759

    Article  CAS  PubMed  Google Scholar 

  31. Wannek C, Konradi I, Mergel J, Lehnert W. Int J Hydrogen Energy, 2009, 34: 9479–9485

    Article  CAS  Google Scholar 

  32. Bevilacqua N, George MG, Galbiati S, Bazylak A, Zeis R. Electrochim Acta, 2017, 257: 89–98

    Article  CAS  Google Scholar 

  33. Khaneft M, Holderer O, Ivanova O, Lüke W, Kentzinger E, Appavou MS, Zorn R, Lehnert W. Fuel Cells, 2016, 16: 406–413

    Article  CAS  Google Scholar 

  34. Peighambardoust SJ, Rowshanzamir S, Amjadi M. Int J Hydrogen Energy, 2010, 35: 9349–9384

    Article  CAS  Google Scholar 

  35. Araya SS, Zhou F, Liso V, Sahlin SL, Vang JR, Thomas S, Gao X, Jeppesen C, Kær SK. Int J Hydrogen Energy, 2016, 41: 21310–21344

    Article  CAS  Google Scholar 

  36. Cheng Y, Wang M, Lu S, Tang C, Wu X, Veder JP, Johannessen B, Thomsen L, Zhang J, Yang S, Wang S, Jiang SP. Appl Catal B-Environ, 2021, 284: 119717

    Article  CAS  Google Scholar 

  37. Cheng Y, He S, Lu S, Veder JP, Johannessen B, Thomsen L, Saunders M, Becker T, De Marco R, Li Q, Yang SZ, Jiang SP. Adv Sci, 2019, 6: 1802066

    Article  Google Scholar 

  38. Wang H, Li X, Feng X, Liu Y, Kang W, Xu X, Zhuang X, Cheng B. J Solid State Electrochem, 2018, 22: 3475–3484

    Article  Google Scholar 

  39. Devrim Y, Devrim H, Eroglu I. Int J Hydrogen Energy, 2016, 41: 10044–10052

    Article  CAS  Google Scholar 

  40. Xu X, Wang H, Lu S, Guo Z, Rao S, Xiu R, Xiang Y. J Power Sources, 2015, 286: 458–463

    Article  CAS  Google Scholar 

  41. Zhan D, Velmurugan J, Mirkin MV. J Am Chem Soc, 2009, 131: 14756–14760

    Article  CAS  PubMed  Google Scholar 

  42. Yang H, Feng L, Wang C, Zhao W, Li X. Eur Polym J, 2012, 48: 803–810

    Article  CAS  Google Scholar 

  43. Chang Chien CT, Chuang PH, Chen CL. Mol Simul, 2016, 42: 1444–1451

    Article  CAS  Google Scholar 

  44. Zhu S, Yan L, Zhang D, Feng Q. Polymer, 2011, 52: 881–892

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2020YFA0710000), the National Natural Science Foundation of China (21902047, 21825201, U19A2017), the Provincial Natural Science Foundation of Hunan (2016TP1009 and 2020JJ5045) and Hunan Graduate Education Innovation Project and Professional Ability Improvement Project (CX20200445). Most of the computation was performed on supercomputers of the National Supercomputer Centre in Changsha.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Cheng, Shanfu Lu, Li Tao or Shuangyin Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Li, Y., Du, S. et al. Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells. Sci. China Chem. 64, 2203–2211 (2021). https://doi.org/10.1007/s11426-021-1142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1142-x

Keywords

Navigation