Skip to main content
Log in

Spatiotemporally-regulated multienzymatic polymerization endows hydrogel continuous gradient and spontaneous actuation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

There are several natural materials which have evolved functional gradients, ingeniously attaining maximal efficacy from limited components. Herein, we utilized the spatiotemporal distribution of initiator acetylacetone to regulate the multienzyme polymerization and fabricate a chitosan-polymer hydrogel. The temporal priority order of acetylacetone was higher than phenol-modified chitosan by density functional theory calculation. The acetylacetone within the gelatin could gradually diffuse spatially into the chitosan hydrogel to fabricate the composite hydrogel with gradient network structure. The gradient hydrogel possessed a transferring topography from the two-dimensional pattern. A continuously decreased modulus along with acetylacetone diffusion was confirmed by atomic force microscope-based force mapping experiment. The water-retaining ability of various regions was confirmed by low-field nuclear magnetic resonance (NMR) and thermogravimetric analysis (TG) analysis, which led to the spontaneous actuation of gradient hydrogel with maximum 1821°/h curling speed and 227° curling angle. Consequently, the promising gradient hydrogels could be applied as intelligent actuators and flexible robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyers MA, McKittrick J, Chen PY. Science, 2013, 339: 773–779

    Article  CAS  PubMed  Google Scholar 

  2. Chen PY, Stokes AG, McKittrick J. Acta Biomater, 2009, 5: 693–706

    Article  PubMed  Google Scholar 

  3. Wang Q, Nemoto M, Li D, Weaver JC, Weden B, Stegemeier J, Bozhilov KN, Wood LR, Milliron GW, Kim CS, DiMasi E, Kisailus D. Adv Funct Mater, 2013, 23: 2908–2917

    Article  CAS  Google Scholar 

  4. Heinemann F, Launspach M, Gries K, Fritz M. Biophysl Chem, 2011, 153: 126–153

    Article  CAS  Google Scholar 

  5. Amini S, Miserez A. Acta Biomater, 2013, 9: 7895–7907

    Article  CAS  PubMed  Google Scholar 

  6. Silva ECN, Walters MC, Paulino GH. J Mater Sci, 2006, 41: 6991–7004

    Article  CAS  Google Scholar 

  7. Liu Z, Meyers MA, Zhang Z, Ritchie RO. Prog Mater Sci, 2017, 88: 467–498

    Article  CAS  Google Scholar 

  8. Studart AR. Adv Funct Mater, 2013, 23: 4423–4436

    Article  CAS  Google Scholar 

  9. Libanori R, Erb RM, Reiser A, Le Ferrand H, Süess MJ, Spolenak R, Studart AR. Nat Commun, 2012, 3: 1265

    Article  PubMed  Google Scholar 

  10. Leong KF, Chua CK, Sudarmadji N, Yeong WY. J Mech Behav Biomed Mater, 2008, 1: 140–152

    Article  CAS  PubMed  Google Scholar 

  11. Min HK, Oh SH, Lee JM, Im GI, Lee JH. Acta Biomater, 2014, 10: 1272–1279

    Article  CAS  PubMed  Google Scholar 

  12. Caliari SR, Harley BAC. Biomaterials, 2011, 32: 5330–5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao F, Weitzel CS, Gao Y, Browdy HM, Shi J, Lin HC, Lovett ST, Xu B. Nanoscale, 2011, 3: 2859–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lyu L, Liu F, Wang X, Hu M, Mu J, Cheong H, Liu G, Xing B. Chem Asian J, 2017, 12: 744–752

    Article  CAS  PubMed  Google Scholar 

  15. Tan J, Zhang M, Hai Z, Wu C, Lin J, Kuang W, Tang H, Huang Y, Chen X, Liang G. ACS Nano, 2019, 13: 5616–5622

    Article  CAS  PubMed  Google Scholar 

  16. Guo M, Wu Y, Xue S, Xia Y, Yang X, Dzenis Y, Li Z, Lei W, Smith AT, Sun L. J Mater Chem A, 2019, 7: 25969–25977

    Article  CAS  Google Scholar 

  17. Li M, Wang X, Dong B, Sitti M. Nat Commun, 2020, 11: 3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fichman G, Schneider JP. Front Bioeng Biotechnol, 2021, 8: 594258

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li Q, Xu S, Feng Q, Dai Q, Yao L, Zhang Y, Gao H, Dong H, Chen D, Cao X. Bioact Mater, 2021, 6: 3396–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dou X, Cao Q, Sun F, Wang Y, Wang H, Shen H, Yang F, Wang X, Wu D. Sci China Chem, 2020, 63: 1793–1798

    Article  CAS  Google Scholar 

  21. Zhang X, Yao D, Zhao W, Zhang R, Yu B, Ma G, Li Y, Hao D, Xu F. Adv Funct Mater, 2021, 31: 2009258

    Article  CAS  Google Scholar 

  22. Gong CY, Wu QJ, Wang YJ, Zhang DD, Luo F, Zhao X, Wei YQ, Qian ZY. Biomaterials, 2013, 34: 6377–6387

    Article  CAS  PubMed  Google Scholar 

  23. Yu Y, Guo L, Wang W, Wu J, Yuan Z. Sci China Chem, 2015, 58: 1866–1874

    Article  CAS  Google Scholar 

  24. Lv J, Wu G, Liu Y, Li C, Huang F, Zhang Y, Liu J, An Y, Ma R, Shi L. Sci China Chem, 2019, 62: 637–648

    Article  CAS  Google Scholar 

  25. Oh SH, An DB, Kim TH, Lee JH. Acta Biomater, 2016, 35: 23–31

    Article  CAS  PubMed  Google Scholar 

  26. Luo R, Wu J, Dinh ND, Chen CH. Adv Funct Mater, 2015, 25: 7272–7279

    Article  CAS  Google Scholar 

  27. Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS. Adv Mater, 2010, 22: 3484–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan W, Wang H, Fang C, Yang Y, Xia X, Yang B, Lin Y, Li G, Bian L. Mater Horiz, 2021, 8: 1722–1734

    Article  CAS  PubMed  Google Scholar 

  29. Wong JY, Velasco A, Rajagopalan P, Pham Q. Langmuir, 2003, 19: 1908–1913

    Article  CAS  Google Scholar 

  30. Marklein RA, Burdick JA. Soft Matter, 2010, 6: 136–143

    Article  CAS  Google Scholar 

  31. Tan Y, Wu R, Li H, Ren W, Du J, Xu S, Wang J. J Mater Chem B, 2015, 3: 4426–4430

    Article  CAS  PubMed  Google Scholar 

  32. Zhan J, Cai Y, He S, Wang L, Yang Z. Angew Chem Int Ed, 2018, 57: 1813–1816

    Article  CAS  Google Scholar 

  33. Huo M, Wang L, Chen Y, Shi J. Nat Commun, 2017, 8: 357

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang S, Wei Q, Shang Y, Zhang Q, Wang Q. Chem Commun, 2017, 53: 12270–12273

    Article  CAS  Google Scholar 

  35. Johnson KA, Goody RS. Biochemistry, 2011, 50: 8264–8269

    Article  CAS  PubMed  Google Scholar 

  36. Kollman PA, Kuhn B, Donini O, Perakyla M, Stanton R, Bakowies D. Acc Chem Res, 2001, 34: 72–79

    Article  CAS  PubMed  Google Scholar 

  37. Borman S. Chem Eng News, 2004, 82: 35–39

    Article  Google Scholar 

  38. Wang X, Chen S, Wu D, Wu Q, Wei Q, He B, Lu Q, Wang Q. Adv Mater, 2018, 30: 1705668

    Article  Google Scholar 

  39. Wang X, Qiao L, Yu X, Wang X, Jiang L, Wang Q. ACS Biomater Sci Eng, 2019, 5: 5888–5896

    Article  CAS  PubMed  Google Scholar 

  40. Wu Q, He Z, Wang X, Zhang Q, Wei Q, Ma S, Ma C, Li J, Wang Q. Nat Commun, 2019, 10: 240

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang Q, Wu J, Wang J, Wang X, Wu C, Chen M, Wu Q, Lesniak MS, Mi Y, Cheng Y, Wang Q. Angew Chem Int Ed, 2020, 59: 3732–3738

    Article  CAS  Google Scholar 

  42. Buettner GR. Free Radical Biol Med, 1987, 3: 259–303

    Article  CAS  Google Scholar 

  43. Hirokawa Y, Tanaka T. J Chem Phys, 1984, 81: 6379–6380

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51873156, 51773155) and the National Key Research and Development Program (2016YFA0100800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Li or Qigang Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, S., Wu, C., Shang, Y. et al. Spatiotemporally-regulated multienzymatic polymerization endows hydrogel continuous gradient and spontaneous actuation. Sci. China Chem. 65, 153–161 (2022). https://doi.org/10.1007/s11426-021-1107-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1107-8

Keywords

Navigation