Skip to main content
Log in

Disordered carbon anodes for Na-ion batteries—quo vadis?

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Na-ion batteries (NIBs) are gradually attracting much attention as an alternative to lead-acid batteries and supplement to Li-ion batteries (LIBs) owing to the abundant Na resources and excellent cost-effectiveness. Since the most commonly used graphite as an anode material in LIBs cannot be inherently used in NIBs, tremendous efforts have been made to advance the fundamental understanding and design of suitable anode materials for NIBs, including the improvement of Na storage capacity and the study on Na storage mechanisms. According to all these studies, disordered carbons are now the most promising anode candidates for NIBs. In this review, we discuss the current challenges and remaining problems to be solved in the area of disordered carbon anode materials for NIBs and provide future insights and research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy MV, Mauger A, Julien CM, Paolella A, Zaghib K. Materials, 2020, 13: 1884

    Article  CAS  PubMed Central  Google Scholar 

  2. Zhang M, Zhang T, Ma Y, Chen Y. Energy Storage Mater, 2016, 4: 1–14

    Article  CAS  Google Scholar 

  3. Xie F, Xu Z, Guo Z, Titirici MM. Prog Energy, 2020, 2: 042002

    Article  Google Scholar 

  4. Zhao LF, Hu Z, Lai WH, Tao Y, Peng J, Miao ZC, Wang YX, Chou SL, Liu HK, Dou SX. Adv Energy Mater, 2021, 11: 2002704

    Article  CAS  Google Scholar 

  5. Zhang J, Han J, Yun Q, Li Q, Long Y, Ling G, Zhang C, Yang QH. Small Sci, 2021, 1: 2000063

    Article  Google Scholar 

  6. Wang Q, Zhao C, Lu Y, Li Y, Zheng Y, Qi Y, Rong X, Jiang L, Qi X, Shao Y, Pan D, Li B, Hu YS, Chen L. Small, 2017, 13: 1701835

    Article  Google Scholar 

  7. Zhang L, Wang WA, Lu S, Xiang Y. Adv Energy Mater, 2021, 11: 2003640

    Article  CAS  Google Scholar 

  8. Li Y, Lu Y, Adelhelm P, Titirici MM, Hu YS. Chem Soc Rev, 2019, 48: 4655–4687

    Article  CAS  PubMed  Google Scholar 

  9. Xiao L, Lu H, Fang Y, Sushko ML, Cao Y, Ai X, Yang H, Liu J. Adv Energy Mater, 2018, 8: 1703238

    Article  Google Scholar 

  10. Xu Z, Xie F, Wang J, Au H, Tebyetekerwa M, Guo Z, Yang S, Hu YS, Titirici MM. Adv Funct Mater, 2019, 29: 1903895

    Article  Google Scholar 

  11. Li Y, Hu YS, Titirici MM, Chen L, Huang X. Adv Energy Mater, 2016, 6: 1600659

    Article  Google Scholar 

  12. Zhu H, Shen F, Luo W, Zhu S, Zhao M, Natarajan B, Dai J, Zhou L, Ji X, Yassar RS, Li T, Hu L. Nano Energy, 2017, 33: 37–44

    Article  CAS  Google Scholar 

  13. Li Y, Hu YS, Qi X, Rong X, Li H, Huang X, Chen L. Energy Storage Mater, 2016, 5: 191–197

    Article  Google Scholar 

  14. Qi Y, Lu Y, Ding F, Zhang Q, Li H, Huang X, Chen L, Hu YS. Angew Chem Int Ed, 2019, 58: 4361–4365

    Article  CAS  Google Scholar 

  15. Luo W, Jian Z, Xing Z, Wang W, Bommier C, Lerner MM, Ji X. ACS Cent Sci, 2015, 1: 516–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Hu YS, Li H, Chen L, Huang X. J Mater Chem A, 2015, 4: 96–104

    Article  Google Scholar 

  17. Li Y, Mu L, Hu YS, Li H, Chen L, Huang X. Energy Storage Mater, 2016, 2: 139–145

    Article  Google Scholar 

  18. Xie F, Xu Z, Jensen ACS, Au H, Lu Y, Araullo-Peters V, Drew AJ, Hu YS, Titirici MM. Adv Funct Mater, 2019, 29: 1901072

    Article  Google Scholar 

  19. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C. Nat Commun, 2014, 5: 4033

    Article  CAS  PubMed  Google Scholar 

  20. Saurel D, Orayech B, Xiao B, Carriazo D, Li X, Rojo T. Adv Energy Mater, 2018, 8: 1703268

    Article  Google Scholar 

  21. Yuan Y, Chen Z, Yu H, Zhang X, Liu T, Xia M, Zheng R, Shui M, Shu J. Energy Storage Mater, 2020, 32: 65–90

    Article  Google Scholar 

  22. Chen W, Wan M, Liu Q, Xiong X, Yu F, Huang Y. Small Methods, 2019, 3: 1800323

    Article  CAS  Google Scholar 

  23. Hou H, Qiu X, Wei W, Zhang Y, Ji X. Adv Energy Mater, 2017, 7: 1602898

    Article  Google Scholar 

  24. Dou X, Hasa I, Saurel D, Vaalma C, Wu L, Buchholz D, Bresser D, Komaba S, Passerini S. Mater Today, 2019, 23: 87–104

    Article  CAS  Google Scholar 

  25. Jache B, Adelhelm P. Angew Chem Int Ed, 2014, 53: 10169–10173

    Article  CAS  Google Scholar 

  26. Doeff MM, Ma Y, Visco SJ, De Jonghe LC. J Electrochem Soc, 1993, 140: L169–L170

    Article  CAS  Google Scholar 

  27. Stevens DA, Dahn JR. J Electrochem Soc, 2000, 147: 1271–1273

    Article  CAS  Google Scholar 

  28. Stevens DA, Dahn JR. J Electrochem Soc, 2000, 147: 4428–4431

    Article  CAS  Google Scholar 

  29. Stevens DA, Dahn JR. J Electrochem Soc, 2001, 148: A803

    Article  CAS  Google Scholar 

  30. Alcantara R, Lavela P, Ortiz GF, Tirado JL. Electrochem Solid-State Lett, 2005, 8: A222

    Article  CAS  Google Scholar 

  31. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K. Adv Funct Mater, 2011, 21: 3859–3867

    Article  CAS  Google Scholar 

  32. Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacín MR. Energy Environ Sci, 2012, 5: 8572–8583

    Article  CAS  Google Scholar 

  33. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J. Nano Lett, 2012, 12: 3783–3787

    Article  CAS  PubMed  Google Scholar 

  34. Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X, Lotfabad EM, Olsen BC, Mitlin D. ACS Nano, 2013, 7: 11004–11015

    Article  CAS  PubMed  Google Scholar 

  35. Bommier C, Surta TW, Dolgos M, Ji X. Nano Lett, 2015, 15: 5888–5892

    Article  CAS  PubMed  Google Scholar 

  36. Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon JM. Adv Energy Mater, 2016, 6: 1501588

    Article  Google Scholar 

  37. Stratford JM, Allan PK, Pecher O, Chater PA, Grey CP. Chem Commun, 2016, 52: 12430–12433

    Article  CAS  Google Scholar 

  38. Li Z, Bommier C, Chong ZS, Jian Z, Surta TW, Wang X, Xing Z, Neuefeind JC, Stickle WF, Dolgos M, Greaney PA, Ji X. Adv Energy Mater, 2017, 7: 1602894

    Article  Google Scholar 

  39. Lu Y, Zhao C, Qi X, Qi Y, Li H, Huang X, Chen L, Hu YS. Adv Energy Mater, 2018, 8: 1800108

    Article  Google Scholar 

  40. Zhao C, Wang Q, Lu Y, Li B, Chen L, Hu YS. Sci Bull, 2018, 63: 1125–1129

    Article  CAS  Google Scholar 

  41. Li Y, Lu Y, Meng Q, Jensen ACS, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici MM, Hu YS. Adv Energy Mater, 2019, 9: 1902852

    Article  CAS  Google Scholar 

  42. Meng Q, Lu Y, Ding F, Zhang Q, Chen L, Hu YS. ACS Energy Lett, 2019, 4: 2608–2612

    Article  CAS  Google Scholar 

  43. Au H, Alptekin H, Jensen ACS, Olsson E, O’Keefe CA, Smith T, Crespo-Ribadeneyra M, Headen TF, Grey CP, Cai Q, Drew AJ, Titirici MM. Energy Environ Sci, 2020, 13: 3469–3479

    Article  CAS  Google Scholar 

  44. Kamiyama A, Kubota K, Igarashi D, Youn Y, Tateyama Y, Ando H, Gotoh K, Komaba S. Angew Chem Int Ed, 2021, 60: 5114–5120

    Article  CAS  Google Scholar 

  45. Jin J, Liu Y, Pang X, Wang Y, Xing X, Chen J. Sci China Chem, 2021, 64: 385–402

    Article  CAS  Google Scholar 

  46. Bin DS, Li Y, Sun YG, Duan SY, Lu Y, Ma J, Cao AM, Hu YS, Wan LJ. Adv Energy Mater, 2018, 8: 1800855

    Article  Google Scholar 

  47. Morikawa Y, Nishimura S-, Hashimoto R-, Ohnuma M, Yamada A. Adv Energy Mater, 2020, 10: 1903176

    Article  CAS  Google Scholar 

  48. Sun N, Guan Z, Liu Y, Cao Y, Zhu Q, Liu H, Wang Z, Zhang P, Xu B. Adv Energy Mater, 2019, 9: 1901351

    Article  Google Scholar 

  49. Jian Z, Bommier C, Luo L, Li Z, Wang W, Wang C, Greaney PA, Ji X. Chem Mater, 2017, 29: 2314–2320

    Article  CAS  Google Scholar 

  50. Simone V, Boulineau A, de Geyer A, Rouchon D, Simonin L, Martinet S. J Energy Chem, 2016, 25: 761–768

    Article  Google Scholar 

  51. Alvin S, Yoon D, Chandra C, Cahyadi HS, Park JH, Chang W, Chung KY, Kim J. Carbon, 2019, 145: 67–81

    Article  CAS  Google Scholar 

  52. Zheng Y, Lu Y, Qi X, Wang Y, Mu L, Li Y, Ma Q, Li J, Hu YS. Energy Storage Mater, 2019, 18: 269–279

    Article  Google Scholar 

  53. Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim J, Komaba S. J Mater Chem A, 2018, 6: 16844–16848

    Article  CAS  Google Scholar 

  54. Kubota K, Shimadzu S, Yabuuchi N, Tominaka S, Shiraishi S, Abreu-Sepulveda M, Manivannan A, Gotoh K, Fukunishi M, Dahbi M, Komaba S. Chem Mater, 2020, 32: 2961–2977

    Article  CAS  Google Scholar 

  55. Alptekin H, Au H, Jensen AC, Olsson E, Goktas M, Headen TF, Adelhelm P, Cai Q, Drew AJ, Titirici MM. ACS Appl Energy Mater, 2020, 3: 9918–9927

    Article  CAS  Google Scholar 

  56. Kamiyama A, Kubota K, Nakano T, Fujimura S, Shiraishi S, Tsukada H, Komaba S. ACS Appl Energy Mater, 2019, 3: 135–140

    Article  Google Scholar 

  57. Li Z, Ma L, Surta TW, Bommier C, Jian Z, Xing Z, Stickle WF, Dolgos M, Amine K, Lu J, Wu T, Ji X. ACS Energy Lett, 2016, 1: 395–401

    Article  CAS  Google Scholar 

  58. Li Z, Chen Y, Jian Z, Jiang H, Razink JJ, Stickle WF, Neuefeind JC, Ji X. Chem Mater, 2018, 30: 4536–4542

    Article  CAS  Google Scholar 

  59. Zhang X, Dong X, Qiu X, Cao Y, Wang C, Wang Y, Xia Y. J Power Sources, 2020, 476: 228550

    Article  CAS  Google Scholar 

  60. Li Q, Zhu Y, Zhao P, Yuan C, Chen M, Wang C. Carbon, 2018, 129: 85–94

    Article  Google Scholar 

  61. Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D. Energy Environ Sci, 2015, 8: 941–955

    Article  CAS  Google Scholar 

  62. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X. J Mater Chem A, 2017, 5: 2411–2428

    Article  CAS  Google Scholar 

  63. Liang Q, Ma W, Shi Y, Li Z, Yang X. Carbon, 2013, 60: 421–428

    Article  CAS  Google Scholar 

  64. Wang H, Yu W, Mao N, Shi J, Liu W. Microporous Mesoporous Mater, 2016, 227: 1–8

    Article  Google Scholar 

  65. Xiang J, Lv W, Mu C, Zhao J, Wang B. J Alloys Compd, 2017, 701: 870–874

    Article  CAS  Google Scholar 

  66. Dahbi M, Kiso M, Kubota K, Horiba T, Chafik T, Hida K, Matsuyama T, Komaba S. J Mater Chem A, 2017, 5: 9917–9928

    Article  CAS  Google Scholar 

  67. Beda A, Le Meins JM, Taberna PL, Simon P, Matei Ghimbeu C. Sustain Mater Technologies, 2020, 26: e00227

    Article  CAS  Google Scholar 

  68. Saavedra Rios CM, Simonin L, Geyer A, Matei Ghimbeu C, Dupont C. Energies, 2020, 13: 3513

    Article  Google Scholar 

  69. Susanti RF, Alvin S, Kim J. J Industrial Eng Chem, 2020, 91: 317–329

    Article  CAS  Google Scholar 

  70. Meng Q. Studies on Amorphous Carbon Anode Materials for Sodium-Ion Batteries. Doctoral Disseration. Beijing: Institute of Physics, Chinese Academy of Sciences, 2021

    Google Scholar 

  71. Li Y, Xu S, Wu X, Yu J, Wang Y, Hu YS, Li H, Chen L, Huang X. J Mater Chem A, 2015, 3: 71–77

    Article  CAS  Google Scholar 

  72. Cao B, Liu H, Xu B, Lei Y, Chen X, Song H. J Mater Chem A, 2016, 4: 6472–6478

    Article  CAS  Google Scholar 

  73. Wang N, Wang Y, Xu X, Liao T, Du Y, Bai Z, Dou S. ACS Appl Mater Interfaces, 2018, 10: 9353–9361

    Article  CAS  PubMed  Google Scholar 

  74. Lu P, Sun Y, Xiang H, Liang X, Yu Y. Adv Energy Mater, 2018, 8: 1702434

    Article  Google Scholar 

  75. Yao X, Ke Y, Ren W, Wang X, Xiong F, Yang W, Qin M, Li Q, Mai L. Adv Energy Mater, 2019, 9: 1803260

    Article  Google Scholar 

  76. Morishita T, Tsumura T, Toyoda M, Przepiórski J, Morawski AW, Konno H, Inagaki M. Carbon, 2010, 48: 2690–2707

    Article  CAS  Google Scholar 

  77. Ci UShT, Onda K, Miyaji H, Shiraishi S, Endo Y. US10049824B2, 2018

  78. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, Dunn B. Nat Rev Mater, 2020, 5: 5–19

    Article  Google Scholar 

  79. Liu J, Zhang Y, Zhang L, Xie F, Vasileff A, Qiao SZ. Adv Mater, 2019, 31: 1901261

    Article  Google Scholar 

  80. Li S, Qiu J, Lai C, Ling M, Zhao H, Zhang S. Nano Energy, 2015, 12: 224–230

    Article  CAS  Google Scholar 

  81. Xie F, Xu Z, Jensen ACS, Ding F, Au H, Feng J, Luo H, Qiao M, Guo Z, Lu Y, Drew AJ, Hu YS, Titirici MM. J Mater Chem A, 2019, 7: 27567–27575

    Article  CAS  Google Scholar 

  82. Zhao X, Ding Y, Xu Q, Yu X, Liu Y, Shen H. Adv Energy Mater, 2019, 9: 1803648

    Article  Google Scholar 

  83. Li Z, Jian Z, Wang X, Rodríguez-Pérez IA, Bommier C, Ji X. Chem Commun, 2017, 53: 2610–2613

    Article  CAS  Google Scholar 

  84. Ding J, Hu W, Paek E, Mitlin D. Chem Rev, 2018, 118: 6457–6498

    Article  CAS  PubMed  Google Scholar 

  85. Goodenough JB, Kim Y. Chem Mater, 2010, 22: 587–603

    Article  CAS  Google Scholar 

  86. Zheng Y, Wang Y, Lu Y, Hu YS, Li J. Nano Energy, 2017, 39: 489–498

    Article  CAS  Google Scholar 

  87. Wasalathilake KC, Li H, Xu L, Yan C. J Energy Chem, 2020, 42: 91–107

    Article  Google Scholar 

  88. Luo XF, Yang CH, Peng YY, Pu NW, Ger MD, Hsieh CT, Chang JK. J Mater Chem A, 2015, 3: 10320–10326

    Article  CAS  Google Scholar 

  89. Guo R, Lv C, Xu W, Sun J, Zhu Y, Yang X, Li J, Sun J, Zhang L, Yang D. Adv Energy Mater, 2020, 10: 1903652

    Article  CAS  Google Scholar 

  90. Lin Q, Zhang J, Lv W, Ma J, He Y, Kang F, Yang QH. Small, 2020, 16: 1902603

    Article  CAS  Google Scholar 

  91. Wang P, Qiao B, Du Y, Li Y, Zhou X, Dai Z, Bao J. J Phys Chem C, 2015, 119: 21336–21344

    Article  CAS  Google Scholar 

  92. Bai Y, Wang Z, Wu C, Xu R, Wu F, Liu Y, Li H, Li Y, Lu J, Amine K. ACS Appl Mater Interfaces, 2015, 7: 5598–5604

    Article  CAS  PubMed  Google Scholar 

  93. Wang Z, Xu W, Chen X, Peng Y, Song Y, Lv C, Liu H, Sun J, Yuan D, Li X, Guo X, Yang D, Zhang L. Adv Funct Mater, 2019, 29: 1902875

    Article  Google Scholar 

  94. Jin Q, Li W, Wang K, Feng P, Li H, Gu T, Zhou M, Wang W, Cheng S, Jiang K. J Mater Chem A, 2019, 7: 10239–10245

    Article  CAS  Google Scholar 

  95. Qian Y, Jiang S, Li Y, Yi Z, Zhou J, Li T, Han Y, Wang Y, Tian J, Lin N, Qian Y. Adv Energy Mater, 2019, 9: 1901676

    Article  Google Scholar 

  96. Chen W, Chen C, Xiong X, Hu P, Hao Z, Huang Y. Adv Sci, 2017, 4: 1600500

    Article  Google Scholar 

  97. Li R, Huang J, Li W, Li J, Cao L, Xu Z, He Y, Yu A, Lu G. Electrochim Acta, 2019, 313: 109–115

    Article  CAS  Google Scholar 

  98. Hong K, Qie L, Zeng R, Yi Z, Zhang W, Wang D, Yin W, Wu C, Fan Q, Zhang W, Huang Y. J Mater Chem A, 2014, 2: 12733–12738

    Article  CAS  Google Scholar 

  99. Okoshi M, Yamada Y, Yamada A, Nakai H. J Electrochem Soc, 2013, 160: A2160–A2165

    Article  CAS  Google Scholar 

  100. Nayak PK, Yang L, Brehm W, Adelhelm P. Angew Chem Int Ed, 2018, 57: 102–120

    Article  CAS  Google Scholar 

  101. Hu YS, Lu Y. ACS Energy Lett, 2019, 4: 2689–2690

    Article  CAS  Google Scholar 

  102. Qi Y, Lu Y, Liu L, Qi X, Ding F, Li H, Huang X, Chen L, Hu YS. Energy Storage Mater, 2020, 26: 577–584

    Article  Google Scholar 

  103. Jiang M, Sun N, Ali Soomro R, Xu B. J Energy Chem, 2021, 55: 34–47

    Article  Google Scholar 

  104. Wang Y, Xiao N, Wang Z, Tang Y, Li H, Yu M, Liu C, Zhou Y, Qiu J. Carbon, 2018, 135: 187–194

    Article  CAS  Google Scholar 

  105. Eshetu GG, Diemant T, Hekmatfar M, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S. Nano Energy, 2019, 55: 327–340

    Article  CAS  Google Scholar 

  106. Pan Y, Zhang Y, Parimalam BS, Nguyen CC, Wang G, Lucht BL. J Electroanal Chem, 2017, 799: 181–186

    Article  CAS  Google Scholar 

  107. Carboni M, Manzi J, Armstrong AR, Billaud J, Brutti S, Younesi R. ChemElectroChem, 2019, 6: 1745–1753

    Article  CAS  Google Scholar 

  108. Zhang J, Wang DW, Lv W, Zhang S, Liang Q, Zheng D, Kang F, Yang QH. Energy Environ Sci, 2017, 10: 370–376

    Article  CAS  Google Scholar 

  109. He H, Sun D, Tang Y, Wang H, Shao M. Energy Storage Mater, 2019, 23: 233–251

    Article  Google Scholar 

  110. Zhang M, Li Y, Wu F, Bai Y, Wu C. Nano Energy, 2021, 82: 105738

    Article  CAS  Google Scholar 

  111. Hou H, Banks CE, Jing M, Zhang Y, Ji X. Adv Mater, 2015, 27: 7861–7866

    Article  CAS  PubMed  Google Scholar 

  112. Zhao J, Zhang YZ, Zhang F, Liang H, Ming F, Alshareef HN, Gao Z. Adv Energy Mater, 2019, 9: 1803215

    Article  Google Scholar 

  113. Xu J, Wang M, Wickramaratne NP, Jaroniec M, Dou S, Dai L. Adv Mater, 2015, 27: 2042–2048

    Article  CAS  PubMed  Google Scholar 

  114. Li Y, Yang Y, Lu Y, Zhou Q, Qi X, Meng Q, Rong X, Chen L, Hu YS. ACS Energy Lett, 2020, 5: 1156–1158

    Article  CAS  Google Scholar 

  115. Yang H, Xu R, Yu Y. Energy Storage Mater, 2019, 22: 105–112

    Article  Google Scholar 

  116. Pei Z, Meng Q, Wei L, Fan J, Chen Y, Zhi C. Energy Storage Mater, 2020, 28: 55–63

    Article  Google Scholar 

  117. Zhen Y, Sa R, Zhou K, Ding L, Chen Y, Mathur S, Hong Z. Nano Energy, 2020, 74: 104895

    Article  CAS  Google Scholar 

  118. Lu H, Chen X, Jia Y, Chen H, Wang Y, Ai X, Yang H, Cao Y. Nano Energy, 2019, 64: 103903

    Article  CAS  Google Scholar 

  119. Xia JL, Yan D, Guo LP, Dong XL, Li WC, Lu AH. Adv Mater, 2020, 32: 2000447

    Article  CAS  Google Scholar 

  120. Yang L, Hu M, Lv Q, Zhang H, Yang W, Lv R. Carbon, 2020, 163: 288–296

    Article  CAS  Google Scholar 

  121. Zhou C, Li A, Cao B, Chen X, Jia M, Song H. J Electrochem Soc, 2018, 165: A1447–A1454

    Article  CAS  Google Scholar 

  122. Chen C, Huang Y, Zhu Y, Zhang Z, Guang Z, Meng Z, Liu P. ACS Sustain Chem Eng, 2020, 8: 1497–1506

    Article  CAS  Google Scholar 

  123. Memarzadeh Lotfabad E, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D. J Mater Chem A, 2014, 2: 19685–19695

    Article  CAS  Google Scholar 

  124. Xu J, Xu Y, Lai C, Xia T, Zhang B, Zhou X. Sci China Chem, 2021, 64: 1267–1282

    Article  CAS  Google Scholar 

  125. Guo Z, Xu Z, Xie F, Feng J, Titirici M. Adv Energy Sustain Res, 2021, 2: 2100074

    Article  Google Scholar 

  126. Ferrari AC, Robertson J. Phys Rev B, 2000, 61: 14095–14107

    Article  CAS  Google Scholar 

  127. Ferrari AC, Basko DM. Nat Nanotech, 2013, 8: 235–246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Technologies R&D Program of China (2016YFB0901500), the National Natural Science Foundation (NSFC) of China (51725206), NSFC-UK-RI_EPSRC (51861165201), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070500), Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020006), Beijing Natural Science Fund-Haidian Original Innovation Joint Fund (L182056), and China Postdoctoral Science Foundation founded Project (2021M693367). Z. X and Z. G thank the China Scholarship Council (CSC) for the PhD funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaxiang Lu or Yong-Sheng Hu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Xu, Z., Guo, Z. et al. Disordered carbon anodes for Na-ion batteries—quo vadis?. Sci. China Chem. 64, 1679–1692 (2021). https://doi.org/10.1007/s11426-021-1074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1074-8

Keywords

Navigation