Skip to main content
Log in

Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for high-performance potassium-ion half/full batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal sulfides have been widely investigated as promising electrode materials for potassium-ion batteries (PIBs) due to their high theoretical capacities. However, the practical application of metal sulfides in PIBs is still hindered by their intrinsic shortcomings of low conductivity and severe volume changes during the potassiation/depotassiation process. Herein, a simple template-based two-step annealing strategy is proposed to impregnate CoS2 nanoparticles in the well-structured carbon nanocubes (denoted CoS2/CNCs) as an advanced anode material for PIBs. The ex-situ XRD measurements reveal the K+ storage mechanism in CoS2/CNCs. Benefiting from the unique structures, including abundant active interfacial sites, high electronic conductivity, and significantly alleviated volume variation, CoS2/CNCs present a high specific capacity (537.3 mAh g−1 at 0.1 A g−1), good cycling stability (322.4 mAh g−1 at 0.5 A g−1 after 300 cycles), and excellent rate capability (153.1 mAh g−1 at 5 A g−1). Moreover, the obtained nanocomposite shows superior potassium storage properties in K-ion full cells when it is coupled with a KVPO4F cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan L, Ma R, Zhang Q, Jia X, Lu B. Angew Chem Int Ed, 2019, 58: 10500–10505

    Article  CAS  Google Scholar 

  2. Xue L, Li Y, Gao H, Zhou W, Lü X, Kaveevivitchai W, Manthiram A, Goodenough JB. J Am Chem Soc, 2017, 139: 2164–2167

    Article  CAS  PubMed  Google Scholar 

  3. Park WB, Han SC, Park C, Hong SU, Han U, Singh SP, Jung YH, Ahn D, Sohn KS, Pyo M. Adv Energy Mater, 2018, 8: 1703099

    Article  CAS  Google Scholar 

  4. Yao L, Gu Q, Yu X. ACS Nano, 2021, 15: 3228–3240

    Article  CAS  PubMed  Google Scholar 

  5. Yi X, Ge J, Zhou J, Zhou J, Lu B. Sci China Chem, 2021, 64: 238–244

    Article  CAS  Google Scholar 

  6. Wang J, Fan L, Liu Z, Chen S, Zhang Q, Wang L, Yang H, Yu X, Lu B. ACS Nano, 2019, 13: 3703–3713

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Zou R, Xia W, Ma J, Qiu B, Mahmood A, Zhao R, Yang Y, Xia D, Xu Q. Small, 2015, 11: 2511–2517

    Article  CAS  PubMed  Google Scholar 

  8. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Nature, 2019, 575: 75–86

    Article  CAS  PubMed  Google Scholar 

  9. Lu Y, Zhang Q, Chen J. Sci China Chem, 2019, 62: 533–548

    Article  CAS  Google Scholar 

  10. Goodenough JB, Gao H. Sci China Chem, 2019, 62: 1555–1556

    Article  CAS  Google Scholar 

  11. Huang B, Shao Y, Liu Y, Lu Z, Lu X, Liao S. ACS Appl Energy Mater, 2019, 2: 6528–6535

    Article  CAS  Google Scholar 

  12. Peng Q, Zhang S, Yang H, Sheng B, Xu R, Wang Q, Yu Y. ACS Nano, 2020, 14: 6024–6033

    Article  CAS  PubMed  Google Scholar 

  13. Eftekhari A, Jian Z, Ji X. ACS Appl Mater Interfaces, 2017, 9: 4404–4419

    Article  CAS  PubMed  Google Scholar 

  14. Yang L, Hong W, Zhang Y, Tian Y, Gao X, Zhu Y, Zou G, Hou H, Ji X. Adv Funct Mater, 2019, 29: 1903454

    Article  CAS  Google Scholar 

  15. Zhang S, Wang G, Wang B, Wang J, Bai J, Wang H. Adv Funct Mater, 2020, 30: 2001592

    Article  CAS  Google Scholar 

  16. Li W, Wang D, Gong Z, Yin Z, Guo X, Liu J, Mao C, Zhang Z, Li G. ACS Nano, 2020, 14: 16046–16056

    Article  PubMed  CAS  Google Scholar 

  17. Liang S, Shi H, Yu Z, Liu Q, Cai K, Wang J, Xu Z. Energy Storage Mater, 2021, 34: 536–544

    Article  Google Scholar 

  18. Shen C, Song G, Zhu X, Wang D, Huang L, Sun Z, Wu Y. Nano Energy, 2020, 78: 105294

    Article  CAS  Google Scholar 

  19. Zhang W, Xie Z, Zheng M, Hu H, Xiao Y, Liu Y, Liang Y. Energy Storage Mater, 2020, 29: 300–309

    Article  Google Scholar 

  20. Chen X, Cheng N, Zhang L, Xiang G, Ding YL, Liu Z. J Alloys Compd, 2021, 861: 158458

    Article  CAS  Google Scholar 

  21. Wu Y, Zhang C, Zhao H, Lei Y. J Mater Chem A, 2021, 9: 9506–9534

    Article  CAS  Google Scholar 

  22. Li W, Huang B, Liu Z, Yang J, Li Y, Xiao S, Chen Q, Li G, Zhao X, Zhang W. Electrochim Acta, 2021, 369: 137704

    Article  CAS  Google Scholar 

  23. Ge X, Liu S, Qiao M, Du Y, Li Y, Bao J, Zhou X. Angew Chem Int Ed, 2019, 58: 14578–14583

    Article  CAS  Google Scholar 

  24. Hu S, Zhang W, Zheng M, Hu H, Xiao Y, Liu Y, Liang Y. J Colloid Interface Sci, 2021, 599: 271–279

    Article  CAS  PubMed  Google Scholar 

  25. Chen X, Liu Q, Bai T, Wang W, He F, Ye M. Chem Eng J, 2021, 409: 127237

    Article  CAS  Google Scholar 

  26. Lee YG, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko DS, Shiratsuchi T, Sugimoto T, Ryu S, Ku JH, Watanabe T, Park Y, Aihara Y, Im D, Han IT. Nat Energy, 2020, 5: 299–308

    Article  CAS  Google Scholar 

  27. Yu DYW, Prikhodchenko PV, Mason CW, Batabyal SK, Gun J, Sladkevich S, Medvedev AG, Lev O. Nat Commun, 2013, 4: 2922

    Article  PubMed  CAS  Google Scholar 

  28. Kong L, Liu Y, Huang H, Liu M, Xu W, Li B, Bu XH. Sci China Mater, 2021, 64: 820–829

    Article  CAS  Google Scholar 

  29. Lai C, Zhang Z, Xu Y, Liao J, Xu Z, Yi Z, Xu J, Bao J, Zhou X. J Mater Chem A, 2021, 9: 1487–1494

    Article  CAS  Google Scholar 

  30. Zhang K, Liang Z, Zou R. Sci China Chem, 2020, 63: 7–10

    Article  CAS  Google Scholar 

  31. Lu XF, Xia BY, Zang SQ, Lou XWD. Angew Chem Int Ed, 2020, 59: 4634–4650

    Article  CAS  Google Scholar 

  32. Zhang J, Yu L, Lou XWD. Nano Res, 2017, 10: 4298–4304

    Article  CAS  Google Scholar 

  33. Feng Y, Xu M, He T, Chen B, Gu F, Zu L, Meng R, Yang J. Adv Mater, 2021, 33: 2007262

    Article  CAS  Google Scholar 

  34. Liu Y, Xu X, Shao Z, Jiang SP. Energy Storage Mater, 2020, 26: 1–22

    Article  Google Scholar 

  35. Wang R, Dong XY, Du J, Zhao JY, Zang SQ. Adv Mater, 2018, 30: 1703711

    Article  CAS  Google Scholar 

  36. Dang S, Zhu QL, Xu Q. Nat Rev Mater, 2018, 3: 17075

    Article  CAS  Google Scholar 

  37. Hu H, Guan BY, Lou XWD. Chem, 2016, 1: 102–113

    Article  CAS  Google Scholar 

  38. Wang Q, Zhu X, Liu Y, Fang Y, Zhou X, Bao J. Carbon, 2018, 127: 658–666

    Article  CAS  Google Scholar 

  39. Fang Y, Xu X, Du Y, Zhu X, Zhou X, Bao J. J Mater Chem A, 2018, 6: 11244–11251

    Article  CAS  Google Scholar 

  40. Cui RC, Xu B, Dong HJ, Yang CC, Jiang Q. Adv Sci, 2020, 7: 1902547

    Article  CAS  Google Scholar 

  41. Zhang Z, Du Y, Wang QC, Xu J, Zhou YN, Bao J, Shen J, Zhou X. Angew Chem Int Ed, 2020, 59: 17504–17510

    Article  CAS  Google Scholar 

  42. He X, Bi L, Li Y, Xu C, Lin D. Electrochim Acta, 2020, 332: 135453

    Article  CAS  Google Scholar 

  43. Fang Y, Luan D, Chen Y, Gao S, Lou XWD. Angew Chem Int Ed, 2020, 59: 2644–2648

    Article  CAS  Google Scholar 

  44. Zhang Y, Wang N, Sun C, Lu Z, Xue P, Tang B, Bai Z, Dou S. Chem Eng J, 2018, 332: 370–376

    Article  CAS  Google Scholar 

  45. Sun Z, Wu XL, Xu J, Qu D, Zhao B, Gu Z, Li W, Liang H, Gao L, Fan Y, Zhou K, Han D, Gan S, Zhang Y, Niu L. Small, 2020, 16: 1907670

    Article  CAS  Google Scholar 

  46. Choi JH, Park GD, Kang YC. Chem Eng J, 2021, 408: 127278

    Article  CAS  Google Scholar 

  47. Xie J, Zhu Y, Zhuang N, Li X, Yuan X, Li J, Hong G, Mai W. J Mater Chem A, 2019, 7: 19332–19341

    Article  CAS  Google Scholar 

  48. Soares DM, Singh G. Nanotechnology, 2020, 31: 455406

    Article  CAS  PubMed  Google Scholar 

  49. Kim H, Seo DH, Bianchini M, Clément RJ, Kim H, Kim JC, Tian Y, Shi T, Yoon WS, Ceder G. Adv Energy Mater, 2018, 8: 1801591

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province of China (BK20180086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosi Zhou.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

11426_2021_1057_MOESM1_ESM.docx

Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for high-performance potassium-ion half/full batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Sun, J., He, Y. et al. Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for high-performance potassium-ion half/full batteries. Sci. China Chem. 64, 1401–1409 (2021). https://doi.org/10.1007/s11426-021-1057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1057-3

Keywords

Navigation