Skip to main content
Log in

Donor strategy for promoting nonradiative decay to achieve an efficient photothermal therapy for treating cancer

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photothermal therapy (PTT) is emerging as an effective treatment for superficial carcinoma. A key challenge to the effectiveness of PTT is to develop photosensitizers with high photothermal conversion efficiency. Aiming to address this challenge, we develop a series of multi-arylpyrrole derivatives with different donors that contain different multi-rotor structures to explore highly efficient PTT photosensitizers. Among these multi-arylpyrrole derivatives, MAP4-FE nanoparticles with a small size of their donor groups and better-donating ability exhibit a high photothermal conversion efficiency (up to 72%) when they are encapsulated by an amphiphilic polymer. As a result, the MAP4-FE nanoparticles have shown satisfactory PTT effects on in vivo tumor eradication under the guidance of photoacoustic signals. The findings of this study provide significant insights for the development of high-efficiency PTT photosensitizers for cancer treatment by making full use of the nonradiative decay of small size donors as rotors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, Ben-Josef E, Beatty GL. Clin Cancer Res, 2017, 23: 137–148

    Article  CAS  PubMed  Google Scholar 

  2. Sullivan LB, Gui DY, Vander Heiden MG. Nat Rev Cancer, 2016, 16: 680–693

    Article  CAS  PubMed  Google Scholar 

  3. De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Nat Rev Dis Primers, 2019, 5: 13

    Article  PubMed  Google Scholar 

  4. Shi Y, Lammers T. Acc Chem Res, 2019, 52: 1543–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Yang K, Yu G, Tian R, Zhou Z, Deng H, Li L, Yang Z, Zhang G, Liu D, Wei J, Yue L, Wang R, Chen X. Adv Funct Mater, 2021, 31: 2008078

    Article  CAS  Google Scholar 

  6. Villanueva MT. Nat Rev Drug Discov, 2018, 17: 619

    Article  CAS  PubMed  Google Scholar 

  7. Son S, Kim JH, Wang X, Zhang C, Yoon SA, Shin J, Sharma A, Lee MH, Cheng L, Wu J, Kim JS. Chem Soc Rev, 2020, 49: 3244–3261

    Article  CAS  PubMed  Google Scholar 

  8. Sun L, Xiong Z, Shen F, Wang Z, Liu Z. Sci China Chem, 2021, 64: 719–733

    Article  CAS  Google Scholar 

  9. You Q, Zhang K, Liu J, Liu C, Wang H, Wang M, Ye S, Gao H, Lv L, Wang C, Zhu L, Yang Y. Adv Sci, 2020, 7: 1903341

    Article  CAS  Google Scholar 

  10. Hong G, Antaris AL, Dai H. Nat Biomed Eng, 2017, 1: 0010

    Article  CAS  Google Scholar 

  11. Wang B, Kostarelos K, Nelson BJ, Zhang L. Adv Mater, 2021, 33: 2002047

    Article  CAS  Google Scholar 

  12. Exner RM, Cortezon-Tamarit F, Pascu SI. Angew Chem Int Ed, 2021, 60: 6230–6241

    Article  CAS  Google Scholar 

  13. Song N, Zhang Z, Liu P, Dai D, Chen C, Li Y, Wang L, Han T, Yang Y-, Wang D, Tang BZ. Adv Funct Mater, 2021, 31: 2009924

    Article  CAS  Google Scholar 

  14. Huang X, Zhang W, Guan G, Song G, Zou R, Hu J. Acc Chem Res, 2017, 50: 2529–2538

    Article  CAS  PubMed  Google Scholar 

  15. Xi D, Xiao M, Cao J, Zhao L, Xu N, Long S, Fan J, Shao K, Sun W, Yan X, Peng X. Adv Mater, 2020, 32: 1907855

    Article  CAS  Google Scholar 

  16. Fan W, Yung B, Huang P, Chen X. Chem Rev, 2017, 117: 13566–13638

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Bhattarai P, Dai Z, Chen X. Chem Soc Rev, 2019, 48: 2053–2108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Li X, Liu L, Li S, Wan Y, Chen JX, Tian S, Huang Z, Xiao YF, Cui X, Xiang C, Tan Q, Zhang XH, Guo W, Liang XJ, Lee CS. ACS Nano, 2019, 13: 12901–12911

    Article  CAS  PubMed  Google Scholar 

  19. Ni JS, Zhang X, Yang G, Kang T, Lin X, Zha M, Li Y, Wang L, Li K. Angew Chem Int Ed, 2020, 59: 11298–11302

    Article  CAS  Google Scholar 

  20. Li B, Lu L, Zhao M, Lei Z, Zhang F. Angew Chem Int Ed, 2018, 57: 7483–7487

    Article  CAS  Google Scholar 

  21. Fang H, Chen Y, Wang Y, Geng S, Yao S, Song D, He W, Guo Z. Sci China Chem, 2020, 63: 699–706

    Article  CAS  Google Scholar 

  22. Tian R, Ma H, Yang Q, Wan H, Zhu S, Chandra S, Sun H, Kiesewetter DO, Niu G, Liang Y, Chen X. Chem Sci, 2019, 10: 326–332

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Liu Y, Li Q, Zeng X, Tian T, Zhou W, Cui Y, Wang X, Cheng X, Ding Q, Wang X, Wu J, Deng H, Li Y, Meng X, Deng Z, Hong X, Xiao Y. Chem Sci, 2020, 11: 2621–2626

    Article  Google Scholar 

  24. Lin J, Li Q, Zeng X, Chen Z, Ding Q, Li Y, Zhou H, Meng X, Chen D, Deng Z, Hong X, Xiao Y. Sci China Chem, 2020, 63: 766–770

    Article  CAS  Google Scholar 

  25. Wu W, Yang Y, Yang Y, Yang Y, Zhang K, Guo L, Ge H, Chen X, Liu J, Feng H. Small, 2019, 15: 1805549

    Article  CAS  Google Scholar 

  26. Zha M, Lin X, Ni JS, Li Y, Zhang Y, Zhang X, Wang L, Li K. Angew Chem Int Ed, 2020, 59: 23268–23276

    Article  CAS  Google Scholar 

  27. Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li K, Wang L, Wang D, Tang BZ. Adv Mater, 2020, 32: 2003210

    Article  CAS  Google Scholar 

  28. Li S, Deng Q, Zhang Y, Li X, Wen G, Cui X, Wan Y, Huang Y, Chen J, Liu Z, Wang L, Lee CS. Adv Mater, 2020, 32: 2001146

    Article  CAS  Google Scholar 

  29. Zhang Y, Song J, Qu J, Qian PC, Wong WY. Sci China Chem, 2021, 64: 341–357

    Article  CAS  Google Scholar 

  30. He S, Song J, Qu J, Cheng Z. Chem Soc Rev, 2018, 47: 4258–4278

    Article  CAS  PubMed  Google Scholar 

  31. Fang Y, Shang J, Liu D, Shi W, Li X, Ma H. J Am Chem Soc, 2020, 142: 15271–15275

    Article  CAS  PubMed  Google Scholar 

  32. Young IS, Thornton PD, Thompson A. Nat Prod Rep, 2010, 27: 1801–1839

    Article  CAS  PubMed  Google Scholar 

  33. Estévez V, Villacampa M, Menéndez JC. Chem Soc Rev, 2014, 43: 4633–4657

    Article  PubMed  Google Scholar 

  34. Fathi P, Pan D. Nanomedicine, 2020, 15: 2493–2515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ren F, Liu P, Gao Y, Shi J, Tong B, Cai Z, Dong Y. Mater Chem Front, 2019, 3: 57–63

    Article  CAS  Google Scholar 

  36. Lei Y, Liu Q, Dong L, Cai Z, Shi J, Zhi J, Tong B, Dong Y. Chem Eur J, 2018, 24: 14269–14274

    Article  CAS  PubMed  Google Scholar 

  37. Lei Y, Dai W, Liu Z, Guo S, Cai Z, Shi J, Zheng X, Zhi J, Tong B, Dong Y. Mater Chem Front, 2019, 3: 284–291

    Article  CAS  Google Scholar 

  38. Ren F, Shi J, Tong B, Cai Z, Dong Y. Mater Chem Front, 2019, 3: 2072–2076

    Article  CAS  Google Scholar 

  39. Qu J, Ren F, Shi J, Tong B, Cai Z, Dong Y. Chem Eur J, 2020, 26: 14947–14953

    Article  CAS  PubMed  Google Scholar 

  40. Dong L, Shang G, Shi J, Zhi J, Tong B, Dong Y. J Phys Chem C, 2017, 121: 11658–11664

    Article  CAS  Google Scholar 

  41. Xu F, Ge H, Xu N, Yang C, Yao Q, Long S, Sun W, Fan J, Xu X, Peng X. Sci China Chem, 2021, 64: 488–498

    Article  CAS  Google Scholar 

  42. Xu W, Wang D, Tang BZ. Angew Chem Int Ed, 2021, 60: 7476–7487

    Article  CAS  Google Scholar 

  43. He Y, Cao Y, Wang Y. Asian J Org Chem, 2018, 7: 2201–2212

    Article  CAS  Google Scholar 

  44. Liu Z, Zou H, Zhao Z, Zhang P, Shan GG, Kwok RTK, Lam JWY, Zheng L, Tang BZ. ACS Nano, 2019, 13: 11283–11293

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Yao Q, Pu Z, Chung J, Ge H, Shi C, Xu N, Xu F, Sun W, Du J, Fan J, Wang J, Yoon J, Peng X. Sci China Chem, 2021, 64: 499–508

    Article  CAS  Google Scholar 

  46. Won M, Koo S, Li H, Sessler JL, Lee JY, Sharma A, Kim JS. Angew Chem Int Ed, 2021, 60: 3196–3204

    Article  CAS  Google Scholar 

  47. Zheng X, Peng Q, Zhu L, Xie Y, Huang X, Shuai Z. Nanoscale, 2016, 8: 15173–15180

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Xu H, Xu W, Zhang C, Shi J, Tong B, Cai Z, Dong Y. Sci China Chem, 2019, 62: 1393–1397

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21875019, 21803007, 21975020, 51803009), the National Key Research and Development Program of China (2018YFA0901800), the Department of Science and Technology of Guangdong Province (2019ZT08Y191), and the Shenzhen Science and Technology Program (JSGG20200225151916021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Li, Xiaoyan Zheng, Jianbing Shi or Yuping Dong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, F., Li, Z., Li, K. et al. Donor strategy for promoting nonradiative decay to achieve an efficient photothermal therapy for treating cancer. Sci. China Chem. 64, 1530–1539 (2021). https://doi.org/10.1007/s11426-021-1055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1055-0

Keywords

Navigation