Skip to main content
Log in

From borophosphate to fluoroborophosphate: a rational design of fluorine-induced birefringence enhancement

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The introduction of oxofluoride anion into anionic group assists to tune optical properties owing to the change of coordination, electronegativity, and according anionic framework. Here, we proposed a rational design of new compounds by fluorine-driven structure and optical property evolution. A new borophosphate Ba2BP3O11 with the monoclinic space group P21/c has been synthesized in the sealed system. Ba2BP3O11 exhibits a rare P–O–P bridge formation, which is the first example in alkaline-earth metal borophosphates. By further substituting [BO4]3− with [BO3F]4−, the first alkaline-earth metal/lead fluoroborophosphates M2BP2O8F (M = Ba and Pb) with the same space group were designed. Since the scissors effect of fluorine, in M2BP2O8F (M = Ba and Pb), a BO3F tetrahedron corner-sharing with three PO4 tetrahedra forms 1D chains along the b-axial direction, which are filled by MOn (M = Ba/Pb, n = 5, 6, 8) distorted polyhedra. The first principles calculation shows that the borophosphate Ba2BP3O11 has a birefringence about 0.013 @1,064 nm, while the fluoroborophosphates M2BP2O8F (M = Ba and Pb) have the values of 0.035 and 0.043 @1,064 nm, respectively. Such an apparent enhancement in birefringence is derived from synergies of the oxyfluoride and cation. The introduction of fluorine-containing heteroanionic groups provides a feasible strategy to design novel promising optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mutailipu M, Poeppelmeier KR, Pan S. Chem Rev, 2021, 121: 1130–1202

    Article  CAS  PubMed  Google Scholar 

  2. Ok KM. Acc Chem Res, 2016, 49: 2774–2785

    Article  CAS  PubMed  Google Scholar 

  3. Sun CF, Yang BP, Mao JG. Sci China Chem, 2011, 54: 911–922

    Article  CAS  Google Scholar 

  4. Jiang H, Teng B, Wang J, Hu X, Liu H, Zhang C. Sc China Ser B-Chem, 2001, 44: 510–515

    Article  CAS  Google Scholar 

  5. Fang Y, Zheng Y, Fang T, Chen Y, Zhu Y, Liang Q, Sheng H, Li Z, Chen C, Wang X. Sci China Chem, 2019, 63: 149–181

    Article  CAS  Google Scholar 

  6. Wang Y, Pan S. Coord Chem Rev, 2016, 323: 15–35

    Article  CAS  Google Scholar 

  7. Dang JH, Mei DJ, Wu YD. J Synth Cryst, 2020, 49: 1308–1319

    Google Scholar 

  8. Lin ZS, Wu YC. J Synth Cryst, 2019, 48: 1773–1781

    CAS  Google Scholar 

  9. Wang XY, Liu LJ, Li RK. J Synth Cryst, 2019, 48: 1790–1798

    CAS  Google Scholar 

  10. Yu H, Young J, Wu H, Zhang W, Rondinelli JM, Halasyamani PS. J Am Chem Soc, 2016, 138: 4984–4989

    Article  CAS  PubMed  Google Scholar 

  11. Kniep R, Engelhardt H, Hauf C. Chem Mater, 1998, 10: 2930–2934

    Article  CAS  Google Scholar 

  12. Ewald B, Huang YX, Kniep R. Z anorg allg Chem, 2007, 633: 1517–1540

    Article  CAS  Google Scholar 

  13. Zhao D, Cheng WD, Zhang H, Huang SP, Xie Z, Zhang WL, Yang SL. Inorg Chem, 2009, 48: 6623–6629

    Article  CAS  PubMed  Google Scholar 

  14. Zhang LJ, Li YY, Liu PF, Chen L. Dalton Trans, 2016, 45: 7124–7130

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Wang L, Zhang S, Wang G, Zhao S, Zhu Y, Wu Y, Chen C. J Opt Soc Am B, 2011, 28: 2236–2239

    Article  CAS  Google Scholar 

  16. Hou Y, Zhang B, Wu H, Yu H, Hu Z, Wang J, Wu Y. Inorg Chem Front, 2021, 8: 1468–1475

    Article  CAS  Google Scholar 

  17. Shi Y, Liang J, Zhang H, Liu Q, Chen X, Yang J, Zhuang W, Rao G. J Solid State Chem, 1998, 135: 43–51

    Article  CAS  Google Scholar 

  18. Pan S, Wu Y, Fu P, Zhang G, Li Z, Du C, Chen C. Chem Mater, 2003, 15: 2218–2221

    Article  CAS  Google Scholar 

  19. Sun J, Zhang X, Li T. Mater Lett, 2018, 212: 343–345

    Article  CAS  Google Scholar 

  20. Weng GG, Zheng LM. Sci China Chem, 2020, 63: 619–636

    Article  CAS  Google Scholar 

  21. Duan FZ, Li JY, Sun W, Chen P, Yu JH, Xu RR. Sci China Chem, 2010, 53: 2159–2163

    Article  CAS  Google Scholar 

  22. Fang Z, Yang B, Hu C, Mao J. J Mater Chem C, 2019, 7: 15162–15165

    CAS  Google Scholar 

  23. Chen J, Xiong L, Chen L, Wu LM. J Am Chem Soc, 2018, 140: 14082–14086

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Cheng W, Zhang H, Geng L, Li Y, Lin C, He Z. Inorg Chem, 2010, 49: 2550–2556

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Pan S, Shi Y. Chem Eur J, 2012, 18: 12046–12051

    Article  CAS  Google Scholar 

  26. Wang Y, Pan S, Han S, Zhang B, Dong L, Zhang M, Yang Z. CrystEngComm, 2014, 16: 6848–6851

    Article  CAS  Google Scholar 

  27. Khan MA, Li YY, Huang-Fu SX, Chen H, Zhang LJ, Liu PF, Yu JS, Duan RH, Chen L. Inorg Chim Acta, 2017, 466: 174–179

    Article  CAS  Google Scholar 

  28. Hou D, Yang Z, Pan S. J Alloys Compd, 2017, 706: 589–595

    Article  CAS  Google Scholar 

  29. Wu Q, Deng D, Zhang J, Zou W, Yang Y, Wang Z, Li H, Zhou R, Lu K, Wei Z. Sci China Chem, 2019, 62: 837–844

    Article  CAS  Google Scholar 

  30. Zhang B, Shi G, Yang Z, Zhang F, Pan S. Angew Chem Int Ed, 2017, 56: 3916–3919

    Article  CAS  Google Scholar 

  31. Shi G, Wang Y, Zhang F, Zhang B, Yang Z, Hou X, Pan S, Poeppelmeier KR. J Am Chem Soc, 2017, 139: 10645–10648

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S. Angew Chem Int Ed, 2017, 56: 14119–14123

    Article  CAS  Google Scholar 

  33. Wang Y, Zhang B, Yang Z, Pan S. Angew Chem Int Ed, 2018, 57: 2150–2154

    Article  CAS  Google Scholar 

  34. Mutailipu M, Zhang M, Zhang B, Wang L, Yang Z, Zhou X, Pan S. Angew Chem Int Ed, 2018, 57: 6095–6099

    Article  CAS  Google Scholar 

  35. Mutailipu M, Zhang M, Yang Z, Pan S. Acc Chem Res, 2019, 52: 791–801

    Article  CAS  PubMed  Google Scholar 

  36. Zou G, Ok KM. Chem Sci, 2020, 11: 5404–5409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang YX, Schäfer G, Borrmann H, Zhao JT, Kniep R. Z Anorg Allg Chem, 2003, 629: 3–5

    Article  CAS  Google Scholar 

  38. Wu B, Hu C, Tang R, Mao F, Feng J, Mao J. Inorg Chem Front, 2019, 6: 723–730

    Article  Google Scholar 

  39. Jansen M, Pilz T. Z Kristallogr, 2013, 228: 476–482

    CAS  Google Scholar 

  40. Jiang D, Han G, Wang Y, Li H, Yang Z, Pan S. Inorg Chem, 2019, 58: 3596–3600

    Article  CAS  PubMed  Google Scholar 

  41. Li MR, Liu W, Ge MH, Chen HH, Yang XX, Zhao JT. Chem Commun, 2004: 1272–1273

  42. Jiang JH, Zhang LC, Huang YX, Sun ZM, Pan Y, Mi JX. Dalton Trans, 2017, 46: 1677–1683

    Article  CAS  PubMed  Google Scholar 

  43. Ding Q, Zhao S, Li L, Shen Y, Shan P, Wu Z, Li X, Li Y, Liu S, Luo J. Inorg Chem, 2019, 58: 1733–1737

    Article  CAS  PubMed  Google Scholar 

  44. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA. J Appl Crystlogr, 2008, 41: 466–470

    Article  CAS  Google Scholar 

  45. Schulz C, Eiden P, Klose P, Ermantraut A, Schmidt M, Garsuch A, Krossing I. Dalton Trans, 2015, 44: 7048–7057

    Article  CAS  PubMed  Google Scholar 

  46. Walsh A, Payne DJ, Egdell RG, Watson GW. Chem Soc Rev, 2011, 40: 4455–4463

    Article  CAS  PubMed  Google Scholar 

  47. Lee Smith W. Appl Opt, 1977, 16: 1798

    Article  CAS  PubMed  Google Scholar 

  48. Lei BH, Jing Q, Yang Z, Zhang B, Pan S. J Mater Chem C, 2015, 3: 1557–1566

    CAS  Google Scholar 

  49. Han S, Mutailipu M, Tudi A, Yang Z, Pan S. Chem Mater, 2020, 32: 2172–2179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51972336, 61835014, 51922014), the International Partnership Program of CAS (1A1365KYSB20200008), the Instrument Developing Project of CAS (GJJSTD20200007), the Science and Technology Service Network Initiative of CAS (KFJ-STS-QYZD-130), Basic Frontier Science Research Program of CAS (ZDBS-LY-SLH035), and the Western Light Foundation of CAS (Y92S191301), Fujian Institute of Innovation, CAS (FJCXY18010202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihua Yang or Shilie Pan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, Z., Jin, W. et al. From borophosphate to fluoroborophosphate: a rational design of fluorine-induced birefringence enhancement. Sci. China Chem. 64, 1498–1503 (2021). https://doi.org/10.1007/s11426-021-1024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1024-5

Keywords

Navigation