Skip to main content
Log in

Structures and properties of functional metal iodates

  • Reviews
  • Special Topic · Inorganic Solid State Chemistry and Energy Materials
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal iodates with a lone-pair containing I(V) that is in an asymmetric coordination geometry can form a diversity of unusual structures and many of them are promising new second homonic generation (SHG) materials. They exhibit wide transparency wavelength regions, large SHG coefficients and high optical-damage thresholds as well as moderately high thermal stability. In this paper, the structures and properties of the metal iodates are reviewed. The combination of d0 transition-metal cations with the iodate groups afforded a large number of metal iodates, with cations covering alkali metal, alkaline earth and lanthanide elements. Many of them are noncentrosymmetric (NCS) and display excellent SHG properties due to the additive effects of polarizations from both types of the asymmetric units. Some lanthanide iodates are able to emit strong luminescence in the visible or near-IR regions. The use of transition metal ions with dn (n ≠ 0) electronic configuration into iodate systems can also induce the formation of NCS compounds when the lone pairs of the iodate groups are properly aligned. The dn transition metal cations are normally octahedrally coordinated or in a square-planar coordination geometry. Furthermore, the combination of two different types of lone-pair-containing cations is also an effective strategy to design new SHG materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen CT, Liu G. Recent advances in nonlinear optical and electro-optical materials. Annu Rev Mater Sci, 1986, 16: 203–243

    Article  CAS  Google Scholar 

  2. Ok KM, Halasyamani PS. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem Soc Rev, 2006, 35: 710–717

    Article  CAS  Google Scholar 

  3. Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater, 1998, 10: 2753–2769

    Article  CAS  Google Scholar 

  4. Wickleder MS. Inorganic lanthanide compounds with complex anions. Chem Rev, 2002, 102, 2011–2087

    Article  CAS  Google Scholar 

  5. Becker P. Borate materials in nonlinear optics. Adv Mater, 1998, 10: 979–992

    Article  CAS  Google Scholar 

  6. Chen CT, Wang YB, Wu BC, Wu KC, Zeng WL, Yu LH. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature, 1995, 373: 322–324

    Article  CAS  Google Scholar 

  7. Chen CT, Wu BC, Jiang AD, You GM. A new-type ultraviolet SHG crystal beta-BaB2O4. Sci Sin Ser B, 1985, 28: 235–243

    Google Scholar 

  8. Hagerman ME, Poeppelmeier KR. Review of the Structure and processing-defect-property relationships of potassium titanyl phosphate: A strategy for novel thin-film photonic devices. Chem Mater, 1995, 7: 602–621

    Article  CAS  Google Scholar 

  9. Ballman AA, Brown H. The growth and properties of strontium barium metaniobate, Sr1−x BaxNb2O6, a tungsten bronze ferroelectric. J Cryst Growth, 1967, 1: 311–314

    Article  CAS  Google Scholar 

  10. Dmitriev VG, Gurzadyan GG, Nikogosyan DN. Handbook of Nonlinear Optical Crystals. Berlin: Springer, 1991

    Google Scholar 

  11. Boyd GD, Buehler E, Storz FG. Linear and nonlinear optical properties of ZnGeP2 and CdSe. Appl Phys Lett, 1971, 18: 301–304

    Article  CAS  Google Scholar 

  12. Liao JH, Marking GM, Hsu KF, Matsushita Y, Ewbank MD, Borwick R, Cunningham P, Rosker MJ, Kanatzidis MG. alpha- and beta-A2Hg3M2S8 (A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response. J Am Chem Soc, 2003, 125: 9484–9493

    Article  CAS  Google Scholar 

  13. Zhang Q, Chung I, Jang JI, Ketterson JB, Kanatzidis MG. Chalcogenide chemistry in ionic liquids: Nonlinear optical wave-mixing properties of the double-cubane compound [Sb7S8Br2](AlCl4)3. J Am Chem Soc, 2009, 131: 9896–9897

    Article  CAS  Google Scholar 

  14. Pan SL, Smit JP, Watkins B, Marvel MR, Stern CL. Poeppelmeier KR. Synthesis, crystal structure, and nonlinear optical properties of Li6CuB4O10: A congruently melting compound with isolated [CuB4O10]6− units. J Am Chem Soc, 2006, 128: 11631–11634

    Article  CAS  Google Scholar 

  15. Zhang WL, Cheng WD, Zhang H, Geng L, Lin CS, He ZZ. A strong second-harmonic generation material Cd4BiO(BO3)3 originating from 3-chromophore asymmetric structures. J Am Chem Soc, 2010, 132: 1508–1509

    Article  CAS  Google Scholar 

  16. Huang YZ, Wu LM, Wu XT, Li LH, Chen L, Zhang YF. Pb2B5O9I: An iodide borate with strong second harmonic generation. J Am Chem Soc, 2010, 132: 12788–12789

    Article  CAS  Google Scholar 

  17. Halasyamani PS. Asymmetric cation coordination in oxide materials: Influence of lone-pair cations on the intra-octahedral distortion in d0 transition metals. Chem Mater, 2004, 16: 3586–3592

    Article  CAS  Google Scholar 

  18. Ok KM, Halasyamani PS. Distortions in octahedrally coordinated d0 transition metal oxides: A continuous symmetry measures approach. Chem Mater, 2006, 18: 3176–3183

    Article  CAS  Google Scholar 

  19. Phanon D, Gautier-Luneau I. Promising material for infrared nonlinear optics: NaI3O8 salt containing an octaoxotriiodate(V) anion formed from condensation of [IO3] ions. Angew Chem Int Ed, 2007, 46, 8488–8491

    Article  CAS  Google Scholar 

  20. Ok KM, Halasyamani PS. The lone-pair cation I5+ in a hexagonal tungsten oxide-like framework: Synthesis, structure, and second-harmonic generating properties of Cs2I4O11. Angew Chem In Ed, 2004, 43: 5489–5491

    Article  CAS  Google Scholar 

  21. Phanon D, Gautier-Luneau I. New materials for infrared non-linear optics. Syntheses, structural characterisations, second harmonic generation and optical transparency of M(IO3)3 metallic iodates. J Mater Chem, 2007, 17: 1123–1130

    Article  CAS  Google Scholar 

  22. Kim SH, Yeon J, Halasyamani PS. Noncentrosymmetric polar oxide material, Pb3SeO5: Synthesis, characterization, electronic structure calculations, and structure-property relationships. Chem Mater, 2009, 21: 5335–5342

    Article  CAS  Google Scholar 

  23. Kong F, Huang SP, Sun ZM, Mao JG, Cheng WD. Se2(B2O7): A new type of second-order NLO material. J Am Chem Soc, 2006, 128: 7750–7751

    Article  CAS  Google Scholar 

  24. Rosenzweig A, Morosin B. A reinvestigation of the crystal structure of LiIO3. Acta Crystallogr, 1966, 20: 758–761

    Article  CAS  Google Scholar 

  25. Ok KM, Halasyamani PS. New metal iodates: Syntheses, structures, and characterizations of noncentrosymmetric La(IO3)3 and NaYl4O12 and centrosymmetric beta-Cs2I4O11 and Rb2I6O15(OH)2·H2O. Inorg Chem, 2005, 44: 9353–9359

    Article  CAS  Google Scholar 

  26. Assefa Z, Ling J, Haire RG, Albrecht-Schmitt TE, Sykora RE. Syntheses, structures, and vibrational spectroscopy of the two-dimensional iodates Ln(IO3)3 and Ln(IO3)3(H2O) (Ln = Yb, Lu). J Solid State Chem, 2006, 179: 3653–3663

    Article  CAS  Google Scholar 

  27. Ngo N, Kalachnikova K, Assefa Z, Haire RG, Sykora RE. Synthesis and structure of In(IO3)3 and vibrational spectroscopy of M(IO3)3 (M = Al, Ga, In). J Solid State Chem, 2006, 179: 3824–3830

    Article  CAS  Google Scholar 

  28. Sykora RE, Khalifah P, Assefa Z, Albrecht-Schmitt TE, Haire RG. Magnetism and Raman spectroscopy of the dimeric lanthanide iodates Ln(IO3)3 (Ln = Gd, Er) and magnetism of Yb(IO3)3. J Solid State Chem, 2008, 181: 1867–1875

    Article  CAS  Google Scholar 

  29. Hector AL, Henderson SJ, Levason W, Webster M. Hydrothermal synthesis of rare earth iodates from the corresponding periodates: Structures of Sc(IO3)3, Y(IO3)3·2H2O, La(IO3)3·1/2H2O and Lu(IO3)3·2H2O. Z Anorg Allg Chem, 2002, 628: 198–202

    Article  CAS  Google Scholar 

  30. Douglas P, Hector AL, Levason W, Light ME, Matthews ML, Webster M. Hydrothermal synthesis of rare earth iodates from the corresponding periodates: Synthesis and structures of Ln(IO3)3 (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er) and Ln(IO3)3·2H2O (Ln = Eu, Gd, Dy, Er, Tm, Yb). Z Anorg Allg Chem, 2004, 630: 479–483

    Article  CAS  Google Scholar 

  31. Chen X, Xue H, Chang X, Zang H, Xiao W. Hydrothermal synthesis and crystal structures of Nd(IO3)3 and Al(IO3)3. J Alloy Compd, 2005, 398: 173–177

    Article  CAS  Google Scholar 

  32. Phanon D, Bentria B, Benbertal D, Mosset A, Gautier-Lunean I. New potential materials for infrared nonlinear optics. Preparation, characterisation and optical transparency of monometallic and bimetallic iodates. Solid State Sci, 2006, 8: 1466–1472

    Article  CAS  Google Scholar 

  33. Masse R, Guitel JC. Chemical preparation and crystal structure of silver iodate. J Solid State Chem, 1980, 32: 177–180

    Article  CAS  Google Scholar 

  34. Bean AC, Campana CF, Kwon O, Albrecht-Schmitt TE. A new oxoanion: [IO4]3− containing I(V) with a stereochemically active lone-pair in the silver uranyl iodate tetraoxoiodate(V), Ag4(UO2)4− (IO3)2(IO4)2O2. J Am Chem Soc, 2001, 123: 8806–8810

    Article  CAS  Google Scholar 

  35. Bean AC, Peper SM, Albrecht-Schmitt TE. Structural relationships, interconversion, and optical properties of the uranyl iodates, UO2(IO3)2 and UO2(IO3)2(H2O): A comparison of reaactions under mild and supercritical conditions. Chem Mater, 2001, 13: 1266–1272

    Article  CAS  Google Scholar 

  36. Ling J, Albrecht-Schmitt TE. Intercalation of iodic acid into the layered uranyl iodate, UO2(IO3)2(H2O). Inorg Chem, 2007, 46: 346–347

    Article  CAS  Google Scholar 

  37. Sykora RE, Wells DM, Albrecht-Schmitt TE. Hydrothermal synthesis and structure of a new one-dimensional, mixed-metal U(VI) iodate, CS2[(UO2)(CrO4)(IO3)2]. Inorg Chem, 2002, 41: 2304–2306

    Article  CAS  Google Scholar 

  38. Bray TH, Beitz JV, Bean AC, Yu Y, Albrecht-Schmitt TE. Structural polarity induced by cooperative hydrogen bonding and lone-pair alignment in the molecular uranyl iodate Na2[UO2(IO3)4(H2O)]. Inorg Chem, 2006, 45: 8251–8257

    Article  CAS  Google Scholar 

  39. Bean AC, Ruf M, Albrecht-Schmitt TE. Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K2[(UO2)3(IO3)4O2] and Ba[(UO2)2(IO3)2O2](H2O). Inorg Chem, 2001, 40: 3959–3963

    Article  CAS  Google Scholar 

  40. Sykora RE, McDaniel SM, Wells DM, Albrecht-Schmitt TE. Mixed-metal uranium(VI) iodates: Hydrothermal syntheses, structures, and reactivity of Rb[UO2(CrO4)(IO3)(H2O)], A2[UO2(CrO4)(IO3)2] (A = K, Rb, Cs), and K2[UO2(MoO4)(IO3)2]. Inorg Chem, 2002, 41: 5126–5132

    Article  CAS  Google Scholar 

  41. Bean AC, Xu Y, Danis JA, Albrecht-Schmitt TE. Aqueous reactions of U(VI) at high chloride concentrations: Syntheses and structures of new uranyl chloride polymers. Inorg Chem, 2002, 41: 6775–6779

    Article  CAS  Google Scholar 

  42. Sykora RE, Bean AC, Scott BL, Runde W, Albrecht-Schmitt TE. New one-dimensional uranyl and neptunyl iodates: crystal structures of K3[(UO2)2(IO3)6](IO3)·H2O and K[NpO2(IO3)3]·1.5H2O. J Solid State Chem, 2004, 177: 725–730

    Article  CAS  Google Scholar 

  43. Sullens TA, Almond PM, Byrd JA, Beitz JV, Bray TH, Albrecht-Schmitt TE. Extended networks, porous sheets, and chiral frameworks. Thorium materials containing mixed geometry anions: Structures and properties of Th(SeO3)SeO4), Th(IO3)2(SeO4)(H2O)3·H2O, and Th(CrO4)(IO3)2. J Solid State Chem, 2006, 179: 1192–1201

    Article  CAS  Google Scholar 

  44. Bean AC, Albrecht-Schmitt TE. Cation effects on the formation of the one-dimensional uranyl iodates A2[(UO2)3(IO3)4O2] (A = K, Rb, Tl) and AE[(UO2)2(IO3)2O2]·(H2O) (AE = Sr, Ba, Pb). J Solid State Chem, 2001, 161: 416–423

    Article  CAS  Google Scholar 

  45. Sykora RE, Ok KM, Halasyamani PS, Albrecht-Schmitt TE. Structural modulation of molybdenyl Iodate architectures by alkali metal cations in AMoO3(IO3) (A = K, Rb, Cs): A facile route to new polar materials with large SHG responses. J Am Chem Soc, 2002, 124: 1951–1957

    Article  CAS  Google Scholar 

  46. Sykora RE, Ok KM, Halasyamani PS, Wells DM, Albrecht-Schmitt TE. New one-dimensional vanadyl iodates: Hydrothermal preparation, structures, and NLO properties of A[VO2(IO3)2] (A = K, Rb) and A[(VO)2(IO3)3O2] (A = NH4, Rb, Cs). Chem Mater, 2002, 14: 2741–2749

    Article  CAS  Google Scholar 

  47. Shehee TC, Sykora RE, Ok KM, Halasyamani PS, Albrecht-Schmitt TE. Hydrothermal preparation, structures, and NLO properties of the rare earth molybdenyl iodates, RE(MoO2)(IO3)4(OH) (RE = Nd, Sm, Eu). Inorg Chem, 2003, 42: 457–462

    Article  CAS  Google Scholar 

  48. Chang HY, Kim SH, Halasyamani PS, Ok KM. Alignment of lone pairs in a new polar material: Synthesis, characterization, and functional properties of Li2Ti(IO3)6. J Am Chem Soc, 2009, 131(7): 2426–2427.

    Article  CAS  Google Scholar 

  49. Chang HY, Kim SH, Ok KM, Halasyamani PS. Polar or nonpolar? A+ cation polarity control in A2Ti(IO3)6 (A = Li, Na, K, Rb, Cs, Tl). J Am Chem Soc, 2009, 131(19): 6865–6873

    Article  CAS  Google Scholar 

  50. Sun CF, Hu CL, Xu X, Ling JB, Hu T, Kong F, Long XF, Mao JG. BaNbO(IO3)5: A new polar material with a very large SHG response. J Am Chem Soc, 2009, 131: 9486–9487

    Article  CAS  Google Scholar 

  51. Yang BP, Hu CL, Xu X, Sun CF, Zhang JH, Mao JG. NaVO2-(IO3)2(H2O): A unique layered material produces a very strong SHG response. Chem Mater, 2010, 22: 1545–1550

    Article  CAS  Google Scholar 

  52. Ling J, Albrecht-Schmitt TE. Square-planar noble metal iodate [M(IO3)4]n− (M = PdII, AuIII; n = 2, 1) anions and their ability to form polar and centrosymmetric architectures. Eur J Inorg Chem, 2007, 5: 652–655

    Article  Google Scholar 

  53. Sun CF, Hu CL, Xu X, Mao JG. Polar or Non-Polar? Syntheses, crystal structures, and optical properties of three new palladium(II) iodates. Inorg Chem, 2010, 49: 9581–9589

    Article  CAS  Google Scholar 

  54. Hu T, Qin L, Kong F, Zhou Y, Mao JG. Ln3Pb3(IO3)133-O) (Ln = La-Nd): New types of second-order nonlinear optical materials containing two types of lone pair cations. Inorg Chem, 2009, 48: 2193–2199

    Article  CAS  Google Scholar 

  55. Bentria B, Benbertal D, Bagieu-Beucher M, Masse R, Mosset A. Crystal structure of anhydrous bismuth iodate, Bi(IO3)3. J Chem Crystallogr, 2003, 33(11): 867–873

    Article  CAS  Google Scholar 

  56. Phanon D, Gautier-Luneau I. Crystal structure of bismuth triiodate dihydrate, Bi(IO3)3·2H2O. Z Kristallogr, 2006, 221(3): 243–244

    CAS  Google Scholar 

  57. Kellersohn T, Alici E, Esser D, Lutz HD. Pb(IO3)2 I-das erste halogenat eines zweiwertigen hauptgruppenmetalls mit schichtenstruktur — kristallstruktur, IR- und Ramanspektren. Z Kristallogr, 1993, 203: 225–233

    Article  CAS  Google Scholar 

  58. Belokoneva EL, Dimitrova OV. Synthesis and Crystal Structure of Pb3[IO3]2Cl4, a rresentative of a nw idate-cloride class of compounds. Kristallografiya, 2010, 55: 24–27

    CAS  Google Scholar 

  59. Bindi L, Welch MD, Bonazzi P, Pratesi G, Menchetti S. The crystal structure of seeligerite, Pb3IO4Cl3, a rare Pb-I-oxychloride from the San Rafael mine, Sierra Gorda, Chile. ineralogical Magazine, 2008, 72: 771–783

    Article  CAS  Google Scholar 

  60. Sun CF, Hu CL, Kong F, Yang BP, Mao JG. Syntheses and crystal structures of four new silver(I) iodates with d0-transition metal cations. Dalton Trans, 2010, 39: 1473–1479

    Article  CAS  Google Scholar 

  61. Shehee TC, Pehler SF, Albrecht-Schmitt TE. Hydrothermal synthesis and structures of the homoleptic iodate complexes [M(IO3)6]2− (M = Mo, Zr). J Alloy Compd, 2005, 388: 225–229

    Article  CAS  Google Scholar 

  62. Ok KM, Halasyamani PS. New d0 transition metal iodates: Synthesis, structure, and characterization of BaTi(IO3)6, LaTiO(IO3)5, Ba2VO2-(IO3)4·(IO3) K2MoO2(IO3)4, and BaMoO2(IO3)4·H2O. Inorg. Chem. 2005, 44: 2263–2271

    Article  CAS  Google Scholar 

  63. Chen XA, Zhang L, Chang X, Zang HG, Xiao WQ. Lithium dioxobis [trioxoiodato(V)]-vanadate, Li[VO2(IO3)2]. Acta Crystallogr Sect C, 2006, 62: i76–i78

    Article  Google Scholar 

  64. Sun CF, Hu T, Xu X, Mao JG. Syntheses, crystal structures, and properties of three new lanthanum(III) vanadium iodates. Dalton Trans, 2010, 39: 7960–7967

    Article  CAS  Google Scholar 

  65. Loefgren P. The crystal structure of potassium chromato iodate, KCrIO6. Acta Chem Scand, 1967, 21: 2781–2791

    Article  Google Scholar 

  66. Sykora RE, Wells DM, Albrecht-Schmitt TE. New molybdenyl iodates: Hydrothermal preparation and structures of molecular K2MoO2(IO3)4 and two-dimensional beta-KMoO3(IO3). J Solid State Chem, 2002, 166: 442–448

    Article  CAS  Google Scholar 

  67. Chen XA, Zhang L, Chang X, Xue HP, Zang HG, Xiao WQ, Song XM, Yan H. LiMoO3(IO3): A new molybdenyl iodate based on WO3-type sheets with large SHG response. J Alloy Compd, 2007, 428: 54–58

    Article  CAS  Google Scholar 

  68. Sykora RE, Wells DM, Albrecht-Schmitt TE. Further evidence for the tetraoxoiodate(V) anion, IO 3−4 : Hydrothermal syntheses and structures of Ba[(MoO2)6(IO4)2O4]·H2O and Ba3[(MoO2)2(IO6)2]·2H2O. Inorg Chem, 2002, 41: 2697–2703

    Article  CAS  Google Scholar 

  69. Chen XA, Chang X, Zang HG, Wang Q, Xiao WQ. Hydrothermal synthesis and structural characterization of a novel NLO compound, La(MoO2)(OH)(IO3)4. J Alloy Compd, 2005, 396: 255–259

    Article  CAS  Google Scholar 

  70. Yang BP, Sun CF, Hu CL, Mao JG. A series of new alkali metal indium iodates with isolated or extended anions. Dalton Trans, 2011, 40: 1055–1060

    Article  CAS  Google Scholar 

  71. Liu XM, Li GH, Hu YW, Yang M, Kong XG, Shi Z, Feng SH. Hydrothermal synthesis and crystal structure of polar and nonpolar compounds in indium iodate family. Cryst Growth Des, 2008, 8: 2453–2457

    Article  CAS  Google Scholar 

  72. Schellhaas F, Hartl H, Frydrych R. Die Kristallstruktur von Kaliumhexajodatogermanat(IV). Acta Crystallogr Sect B, 1972, 28: 2834–2838

    Article  CAS  Google Scholar 

  73. Li PX, Hu CL, Xu X, Wang RY, Sun CF, Mao JG. Explorations of new second-order nonlinear optical materials in the KI-MII-IV-O systems. Inorg Chem, 2010, 49: 4599–4605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangGao Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Yang, B. & Mao, J. Structures and properties of functional metal iodates. Sci. China Chem. 54, 911–922 (2011). https://doi.org/10.1007/s11426-011-4289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4289-8

Keywords

Navigation