Skip to main content
Log in

Rational design of a cationic polymer network towards record high uptake of 99TcO4 in nuclear waste

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

99Tc is a long-lived radionuclide present in large amounts as TcO4- anion in used nuclear fuel. Its removal from the waste stream is highly desirable because of its interference capability with actinide separation and its volatile nature during the nuclear waste vitrification process. Despite the progress achieved in the past few years, the design of anion-exchange materials with optimized Tc uptake property and improved stability under the extreme condition, is still a research goal beneficial for reducing the volume of secondary radioactive solid waste generated during the waste partitioning process. However, their design philosophy remains elusive, with challenges coming from charge repulsion, steric hindrance, and insufficient reactive sites within the materials. Herein, we present a design philosophy of cationic polymer network materials for TcO4- separation by systematic precursor screening and structure prediction. This affords an optimized material, SCU-CPN-2 (SCU=Soochow University), with extremely high positive charge density while maintaining high radiation resistance. SCU-CPN-2 exhibits a record high adsorption capacity (1,467 mg/g towards the surrogate ReO4-) compared to all anion-exchange materials reported up to date. In addition to ultrafast adsorption kinetics, SCU-CPN-2 has remarkable selectivity over nitrate and sulfate, and facile recyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee MS, Um W, Wang G, Kruger AA, Lukens WW, Rousseau R, Glezakou VA. Nat Commun, 2016, 7: 12067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dickson JO, Harsh JB, Flury M, Lukens WW, Pierce EM. Environ Sci Technol, 2014, 48: 12851–12857

    Article  CAS  PubMed  Google Scholar 

  3. Darab JG, Smith PA. Chem Mater, 1996, 8: 1004–1021

    Article  CAS  Google Scholar 

  4. International Atomic Energy Agency. Nuclear Power Reactors in the World. Reference Data Series No. 2. Vienna: IAEA, 2020

    Google Scholar 

  5. Marchenko VI, Dvoeglazov KN, Volk VI. Radiochemistry, 2009, 51: 329–344

    Article  CAS  Google Scholar 

  6. Zhou X, Ye G, Zhang H, Li L, Luo F, Meng Z. Radiochim Acta, 2014, 102: 111–116

    Article  CAS  Google Scholar 

  7. Wang S, Alekseev EV, Diwu J, Casey WH, Phillips BL, Depmeier W, Albrecht-Schmitt TE. Angew Chem Int Ed, 2010, 49: 1057–1060

    Article  CAS  Google Scholar 

  8. Wang S, Yu P, Purse BA, Orta MJ, Diwu J, Casey WH, Phillips BL, Alekseev EV, Depmeier W, Hobbs DT, Albrecht-Schmitt TE. Adv Funct Mater, 2012, 22: 2241–2250

    Article  CAS  Google Scholar 

  9. Lin J, Zhu L, Yue Z, Yang C, Liu W, Albrecht-Schmitt TE, Wang JQ, Wang S. Adv Sci, 2019, 6: 1900381

    Article  Google Scholar 

  10. McIntyre LJ, Jackson LK, Fogg AM. Chem Mater, 2008, 20: 335–340

    Article  CAS  Google Scholar 

  11. Li Y, Wang Q, Li Q, Zhang Z, Zhang L, Liu X. J Taiwan Institute Chem Engineers, 2015, 55: 126–132

    Article  CAS  Google Scholar 

  12. Zu J, Wei Y, Ye M, Tang F, Liu R. Nucl Sci Tech, 2015, 26: S10302

    Google Scholar 

  13. Oliver SRJ. Chem Soc Rev, 2009, 38: 1868–1881

    Article  CAS  PubMed  Google Scholar 

  14. Sheng D, Zhu L, Xu C, Xiao C, Wang Y, Wang Y, Chen L, Diwu J, Chen J, Chai Z, Albrecht-Schmitt TE, Wang S. Environ Sci Technol, 2017, 51: 3471–3479

    Article  CAS  PubMed  Google Scholar 

  15. Sheng D, Zhu L, Dai X, Xu C, Li P, Pearce CI, Xiao C, Chen J, Zhou R, Duan T, Farha OK, Chai Z, Wang S. Angew Chem Int Ed, 2019, 58: 4968–4972

    Article  CAS  Google Scholar 

  16. Zhu L, Sheng D, Xu C, Dai X, Silver MA, Li J, Li P, Wang Y, Wang Y, Chen L, Xiao C, Chen J, Zhou R, Zhang C, Farha OK, Chai Z, Albrecht-Schmitt TE, Wang S. J Am Chem Soc, 2017, 139: 14873–14876

    Article  CAS  PubMed  Google Scholar 

  17. Banerjee D, Xu W, Nie Z, Johnson LEV, Coghlan C, Sushko ML, Kim D, Schweiger MJ, Kruger AA, Doonan CJ, Thallapally PK. Inorg Chem, 2016, 55: 8241–8243

    Article  CAS  PubMed  Google Scholar 

  18. Fei H, Rogow DL, Oliver SRJ. J Am Chem Soc, 2010, 132: 7202–7209

    Article  CAS  PubMed  Google Scholar 

  19. Zhong X, Liang W, Wang H, Xue C, Hu B. J Hazard Mater, 2020, 407: 124729

    Article  PubMed  Google Scholar 

  20. Desai AV, Manna B, Karmakar A, Sahu A, Ghosh SK. Angew Chem Int Ed, 2016, 55: 7811–7815

    Article  CAS  Google Scholar 

  21. Li J, Zhu L, Xiao C, Chen L, Chai Z, Wang S. Radiochim Acta, 2018, 106: 581–591

    Article  CAS  Google Scholar 

  22. Zu J, Ye M, Wang P, Tang F, He L. RSC Adv, 2016, 6: 18868–18873

    Article  CAS  Google Scholar 

  23. Shu Z, Yang M. Chin J Chem Eng, 2010, 18: 372–376

    Article  CAS  Google Scholar 

  24. Xiong C, Yao C, Wu X. Hydrometallurgy, 2008, 90: 221–226

    Article  CAS  Google Scholar 

  25. Li J, Dai X, Zhu L, Xu C, Zhang D, Silver MA, Li P, Chen L, Li Y, Zuo D, Zhang H, Xiao C, Chen J, Diwu J, Farha OK, Albrecht-Schmitt TE, Chai Z, Wang S. Nat Commun, 2018, 9: 3007

    Article  PubMed  PubMed Central  Google Scholar 

  26. Banerjee D, Elsaidi SK, Aguila B, Li B, Kim D, Schweiger MJ, Kruger AA, Doonan CJ, Ma S, Thallapally PK. Chem Eur J, 2016, 22: 17581–17584

    Article  CAS  PubMed  Google Scholar 

  27. Geng F, Xin H, Matsushita Y, Ma R, Tanaka M, Izumi F, Iyi N, Sasaki T. Chem Eur J, 2008, 14: 9255–9260

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Gao H. J Colloid Interface Sci, 2006, 301: 19–26

    Article  CAS  PubMed  Google Scholar 

  29. Shen N, Yang Z, Liu S, Dai X, Xiao C, Taylor-Pashow K, Li D, Yang C, Li J, Zhang Y, Zhang M, Zhou R, Chai Z, Wang S. Nat Commun, 2020, 11: 5571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonnesen PV, Brown GM, Alexandratos SD, Bavoux LB, Presley DJ, Patel V, Ober R, Moyer BA. Environ Sci Technol, 2000, 34: 3761–3766

    Article  CAS  Google Scholar 

  31. Pillay KKS. J RadioAnal Nucl Chem Articles, 1986, 102: 247–268

    Article  CAS  Google Scholar 

  32. Wiley RH, Devenuto G. J Appl Polym Sci, 1965, 9: 2001–2007

    Article  CAS  Google Scholar 

  33. Liu Z, Han B. Environ Sci Technol, 2020, 54: 216–224

    Article  CAS  PubMed  Google Scholar 

  34. Diercks CS, Yaghi OM. Science, 2017, 355: eaal1585

    Article  PubMed  Google Scholar 

  35. Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Xie Y, Yu S, Xiao C, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X. Sci China Chem, 2019, 62: 933–967

    Article  CAS  Google Scholar 

  36. Zhou J, Zuo P, Liu Y, Yang Z, Xu T. Sci China Chem, 2018, 61: 1062–1087

    Article  CAS  Google Scholar 

  37. Sun Q, Aguila B, Ma S. Trends Chem, 2019, 1: 292–303

    Article  CAS  Google Scholar 

  38. Sun Q, Aguila B, Song Y, Ma S. Acc Chem Res, 2020, 53: 812–821

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Innovation, 2021, 2: 100076

    Google Scholar 

  40. He P, Lv F, Liu L, Wang S. Sci China Chem, 2017, 60: 1567–1574

    Article  CAS  Google Scholar 

  41. Huang N, Krishna R, Jiang D. J Am Chem Soc, 2015, 137: 7079–7082

    Article  CAS  PubMed  Google Scholar 

  42. Sun Q, Zhu L, Aguila B, Thallapally PK, Xu C, Chen J, Wang S, Rogers D, Ma S. Nat Commun, 2019, 10: 1646

    Article  PubMed  PubMed Central  Google Scholar 

  43. Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Nature, 2016, 529: 190–194

    Article  CAS  PubMed  Google Scholar 

  44. Li D, Kaplan DI, Knox AS, Crapse KP, Diprete DP. J Environ Radioact, 2014, 136: 56–63

    Article  CAS  PubMed  Google Scholar 

  45. Zhao H, Li L, Wang Y, Wang R. Sci Rep, 2014, 4: 5478

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li J, Chen C, Zhang R, Wang X. Sci China Chem, 2016, 59: 150–158

    Article  CAS  Google Scholar 

  47. Xiong Y, Cui X, Zhang P, Wang Y, Lou Z, Shan W. ACS Sustain Chem Eng, 2017, 5: 1010–1018

    Article  CAS  Google Scholar 

  48. He L, Liu S, Chen L, Dai X, Li J, Zhang M, Ma F, Zhang C, Yang Z, Zhou R, Chai Z, Wang S. Chem Sci, 2019, 10: 4293–4305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Xie M, Lan J, Yuan L, Yu J, Li J, Peng J, Chai Z, Gibson JK, Zhai M, Shi W. Chem, 2020, 6: 2796–2809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21790374, 21825601, 21806117, 21906114, 22006108), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the National Key R&D Program of China (2018YFB1900203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuao Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, L., Shen, N. et al. Rational design of a cationic polymer network towards record high uptake of 99TcO4 in nuclear waste. Sci. China Chem. 64, 1251–1260 (2021). https://doi.org/10.1007/s11426-020-9962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9962-9

Keywords

Navigation