Skip to main content
Log in

Photocatalyst-controlled and visible light-enabled selective oxidation of pyridinium salts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This study proposes two different methods of photocatalytic-controlled and visible light-induced selective oxidation of pyridiniums with air as the terminal oxidant. The key to these transformations is to choose the appropriate light source and photocatalyst. Pyridiniums are successfully converted into pyrroles through oxygen-mediated cycloaddition, proton-coupled electron transfer (PCET), pyridine ring opening, and recyclization. The other route is that pyridiniums selectively form 4-carbonyl pyridines through free radical rearrangement/aerobic oxidation under the catalysis of cobalt (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krátký M, Vinšová J. CPD, 2012, 19: 1343–1355

    Google Scholar 

  2. Allais C, Grassot JM, Rodriguez J, Constantieux T. Chem Rev, 2014, 114: 10829–10868

    Article  Google Scholar 

  3. Flisak Z, Sun WH. ACS Catal, 2015, 5: 4713–4724

    Article  Google Scholar 

  4. Guan AY, Liu CL, Sun XF, Xie Y, Wang MA. Bioorg Med Chem, 2016, 24: 342–353

    Article  Google Scholar 

  5. Murakami K, Yamada S, Kaneda T, Itami K. Chem Rev, 2017, 117: 9302–9332

    Article  Google Scholar 

  6. Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. Chem Soc Rev, 2017, 46: 7706–7756

    Article  Google Scholar 

  7. Madaan P, Tyagi VK. J Oleo Sci, 2008, 57: 197–215

    Article  Google Scholar 

  8. Kakehi A. Heterocycles, 2012, 85: 1529–1577

    Article  Google Scholar 

  9. Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem Rev, 2012, 112: 2642–2713

    Article  Google Scholar 

  10. Bertuzzi G, Bernardi L, Fochi M. Catalysts, 2018, 8: 632–666

    Article  Google Scholar 

  11. Sowmiah S, Esperança JMSS, Rebelo LPN, Afonso CAM. Org Chem Front, 2018, 5: 453–493

    Article  Google Scholar 

  12. Yamada S. Chem Rev, 2018, 118: 11353–11432

    Article  Google Scholar 

  13. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  Google Scholar 

  14. Ladenburg A. Ber, 1883, 16

  15. Claret PA, Williams GH. J Chem Soc C, 1969, 146

  16. Staveness D, Bosque I, Stephenson CRJ. Acc Chem Res, 2016, 49: 2295–2306

    Article  Google Scholar 

  17. Romero KJ, Galliher MS, Pratt DA, Stephenson CRJ. Chem Soc Rev, 2018, 47: 7851–7866

    Article  Google Scholar 

  18. Proctor RSJ, Phipps RJ. Angew Chem Int Ed, 2019, 58: 13666–13699

    Article  Google Scholar 

  19. He FS, Ye S, Wu J. ACS Catal, 2019, 9: 8943–8960

    Article  Google Scholar 

  20. Correia JTM, Fernandes VA, Matsuo BT, C.Delgado JA, de Souza WC, Paixão MW. Chem Commun, 2020, 56: 503–514

    Article  Google Scholar 

  21. Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew Chem Int Ed, 2020, 59: 9264–9280

    Article  Google Scholar 

  22. Klauck FJR, James MJ, Glorius F. Angew Chem Int Ed, 2017, 56: 12336–12339

    Article  Google Scholar 

  23. Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J Am Chem Soc, 2017, 139: 5313–5316

    Article  Google Scholar 

  24. Liu WD, Xu GQ, Hu XQ, Xu PF. Org Lett, 2017, 19: 6288–6291

    Article  Google Scholar 

  25. Jelier BJ, Tripet PF, Pietrasiak E, Franzoni I, Jeschke G, Togni A. Angew Chem Int Ed, 2018, 57: 13784–13789

    Article  Google Scholar 

  26. Miyazawa K, Ochi R, Koike T, Akita M. Org Chem Front, 2018, 5: 1406–1410

    Article  Google Scholar 

  27. Barthelemy AL, Tuccio B, Magnier E, Dagousset G. Angew Chem Int Ed, 2018, 57: 13790–13794

    Article  Google Scholar 

  28. Ociepa M, Turkowska J, Gryko D. ACS Catal, 2018, 8: 11362–11367

    Article  Google Scholar 

  29. Wu J, He L, Noble A, Aggarwal VK. J Am Chem Soc, 2018, 140: 10700–10704

    Article  Google Scholar 

  30. Bao X, Wang Q, Zhu J. Angew Chem Int Ed, 2019, 58: 2139–2143

    Article  Google Scholar 

  31. Klauck FJR, Yoon H, James MJ, Lautens M, Glorius F. ACS Catal, 2019, 9: 236–241

    Article  Google Scholar 

  32. Yu XY, Chen JR, Xiao WJ. Chem Rev, 2021, 121: 506–561

    Article  Google Scholar 

  33. Yuan F, Yan D, Gao P, Shi D, Xiao W, Chen J. ChemCatChem, 2021, 13: 543–547

    Article  Google Scholar 

  34. Hu RB, Sun S, Su Y. Angew Chem Int Ed, 2017, 56: 10877–10880

    Article  Google Scholar 

  35. Zhou W, Miura T, Murakami M. Angew Chem Int Ed, 2018, 57: 5139–5142

    Article  Google Scholar 

  36. Kim N, Lee C, Kim T, Hong S. Org Lett, 2019, 21: 9719–9723

    Article  Google Scholar 

  37. Buquoi JQ, Lear JM, Gu X, Nagib DA. ACS Catal, 2019, 9: 5330–5335

    Article  Google Scholar 

  38. Jeon J, He YT, Shin S, Hong S. Angew Chem Int Ed, 2020, 59: 281–285

    Article  Google Scholar 

  39. Xu G, Chen P, Liu P, Tang S, Zhang X, Sun J. Angew Chem Int Ed, 2019, 58: 1980–1984

    Article  Google Scholar 

  40. Jung S, Lee H, Moon Y, Jung HY, Hong S. ACS Catal, 2019, 9: 9891–9896

    Article  Google Scholar 

  41. Kim I, Kang G, Lee K, Park B, Kang D, Jung H, He YT, Baik MH, Hong S. J Am Chem Soc, 2019, 141: 9239–9248

    Article  Google Scholar 

  42. Moon Y, Park B, Kim I, Kang G, Shin S, Kang D, Baik MH, Hong S. Nat Commun, 2019, 10: 4117

    Article  Google Scholar 

  43. Mathi GR, Jeong Y, Moon Y, Hong S. Angew Chem Int Ed, 2020, 59: 2049–2054

    Article  Google Scholar 

  44. Rammal F, Gao D, Boujnah S, Hussein AA, Lalevée J, Gaumont AC, Morlet-Savary F, Lakhdar S. ACS Catal, 2020, 10: 13710–13717

    Article  Google Scholar 

  45. Ghogare AA, Greer A. Chem Rev, 2016, 116: 9994–10034

    Article  Google Scholar 

  46. Liu Q, Wu LZ. Natl Sci Rev, 2017, 4: 359–380

    Article  Google Scholar 

  47. Zhang X, Rakesh KP, Ravindar L, Qin HL. Green Chem, 2018, 20: 4790–4833

    Article  Google Scholar 

  48. Zhang Y, Schilling W, Das S. ChemSusChem, 2019, 12: 2898–2910

    Article  Google Scholar 

  49. Poon T, Sivaguru J, Franz R, Jockusch S, Martinez C, Washington I, Adam W, Inoue Y, Turro NJ. J Am Chem Soc, 2004, 126: 10498–10499

    Article  Google Scholar 

  50. Zhang C, Jiao N. J Am Chem Soc, 2010, 132: 28–29

    Article  Google Scholar 

  51. Yu Q, Zhang Y, Wan JP. Green Chem, 2019, 21: 3436–3441

    Article  Google Scholar 

  52. Ohkoshi S, Ohhata K, Okumura K, Kajitani M, Sugiyama T, Sakaguchi Y, Nakamura J, Hayashi H, Sugimori A. Chem Lett, 1992, 21: 715–718

    Article  Google Scholar 

  53. Titskii GD, Mitchenko ES, Gaidash TS. Theor Exp Chem, 2010, 46: 239–242

    Article  Google Scholar 

  54. Ramette RW, Sandell EB. J Am Chem Soc, 1956, 78: 4872–4878

    Article  Google Scholar 

  55. Best QA, Xu R, McCarroll ME, Wang L, Dyer DJ. Org Lett, 2010, 12: 3219–3221

    Article  Google Scholar 

  56. Yoshioka E, Kohtani S, Jichu T, Fukazawa T, Nagai T, Kawashima A, Takemoto Y, Miyabe H. J Org Chem, 2016, 81: 7217–7229

    Article  Google Scholar 

  57. Cukier RI, Nocera DG. Annu Rev Phys Chem, 1998, 49: 337–369

    Article  Google Scholar 

  58. Formosinho S, Barroso M. Proton-Coupled Electron Transfer: A Carrefour of Chemical Reactivity Traditions. Cambridge: Royal Society of Chemistry, 2012

    Google Scholar 

  59. Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Chem Rev, 2012, 112: 4016–4093

    Article  Google Scholar 

  60. Gentry EC, Knowles RR. Acc Chem Res, 2016, 49: 1546–1556

    Article  Google Scholar 

  61. Wang H, Wang Z, Huang H, Tan J, Xu K. Org Lett, 2016, 18: 5680–5683

    Article  Google Scholar 

  62. Harrowven DC, Sutton BJ. Progress in Heterocyclic Chemistry. Southampton: University of Southampton, 2005

    Google Scholar 

  63. Proctor RSJ, Davis HJ, Phipps RJ. Science, 2018, 360: 419–422

    Article  Google Scholar 

  64. Feng A, Yang Y, Liu Y, Geng C, Zhu R, Zhang D. J Org Chem, 2020, 85: 7207–7217

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22061003, 21861006), the Guangxi Natural Science Foundation of China (2016GXNSFEA380001, 2019GXNSFAA245027), the Guangxi Key R&D Program (AB18221005), the Science and Technology Major Project of Guangxi (AA17204058-21) and Guangxi Science and Technology Base and Special Talents (guike AD19110027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng-Shan Wang, Hai-Tao Tang or Ying-Ming Pan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, XJ., He, HP., Liu, Q. et al. Photocatalyst-controlled and visible light-enabled selective oxidation of pyridinium salts. Sci. China Chem. 64, 753–760 (2021). https://doi.org/10.1007/s11426-020-9958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9958-6

Keywords

Navigation