Skip to main content

The Applications of Metal-Based Photocatalysis in Organic Synthesis

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

Photoredox catalysis is considered as a “hot topic” in organic synthesis, and it is now impossible to count the number of papers that have been published in this field. It has been shown that the photosensitizer plays a crucial role in this type of reactions and Ir- and Ru-based complexes are the most popular. These complexes have many important advantages (visible light absorption, good oxidants and reductants, long excited life-times), but they are also composed of expensive and toxic metals. In order to overcome these drawbacks and to explore new reactivities, the scientific community started to study other kind of complexes by changing the metal center. Copper-complexes have emerged as powerful photocatalysts to perform various organic transformations and proved sometimes to be superior to their Ir-/Ru homologues. In this section, modern organic reactions catalyzed by copper-based photosensitizers will be presented through a selection of relevant examples. Because copper is not the only metal that has interesting photoredox properties, a large variety of other metal-complexes started to appear for photocatalytic applications. In a second part of this chapter, various metal complexes (U, Au, Ni, Pd, Co, Fe, Zr, Cr, Mo, W) that have been applicated to photocatalysis will be presented regarding to their applications in organic synthesis. They all have their own specific features which explain the broad diversity of organic transformations cover by these catalysts. The number of syntheses of new metal-complexes is growing, and we can expect that this field of research will become even more important in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paria, S., Reiser, O.: Copper in photocatalysis. ChemCatChem. 6, 2477–2483 (2014)

    Article  CAS  Google Scholar 

  2. Reiser, O.: Shining light on copper: unique opportunities for visible light catalyzed atom transfer radical addition reactions and related processes. Acc. Chem. Res. 49, 1990–1996 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. Hernandez-Perez, A.C., Collins, S.K.: Heteroleptic Cu-based sensitizers in photoredox catalysis. Acc. Chem. Res. 49, 1557–1565 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Deldaele, C., Michelet, B., Baguia, H., Kajoul, S., Romero, E., Moucheron, C., Evano, G.: A general copper-based photoredox catalyst for organic synthesis: scope, application in natural product synthesis and mechanistic insights. Chimia. 72, 621–629 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Larsen, C.L., Wenger, O.S.: Photoredox catalysis with metal complexes made from earth abundant elements. Chem. Eur. J. 24, 2039–2058 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. McMillin, D.R., Buckner, M.T., Ahn, B.T.: A light-induced redox reaction of bis(2,9-dimethyl-1,10-phenanthroline)copper(I). Inorg. Chem. 16, 943–945 (1977)

    Article  CAS  Google Scholar 

  7. Ahn, B.T., McMillin, D.R.: Studies of photoinduced electron transfer from bis(2,9-dimethyl-1,10-phenanthroline)copper(I). Inorg. Chem. 17, 2253–2258 (1978)

    Article  CAS  Google Scholar 

  8. Hossain, A., Bhattacharyya, A., Reiser, O.: Copper’s rapid ascent in visible-light photoredox catalysis. Science. 364, eaav9713 (2019)

    Article  PubMed  CAS  Google Scholar 

  9. Grutsch, P.A., Kutal, C.: Photobehavior of copper(I) compounds. Role of copper(I)-phosphine compounds in the photosensitized valence isomerization of norbornadiene. J. Am. Chem. Soc. 101, 4228–4233 (1979)

    Article  CAS  Google Scholar 

  10. Mitani, M., Kato, I., Koyama, K.: Photoaddition of alkyl halides to olefins catalyzed by copper(I) complexes. J. Am. Chem. Soc. 105, 6719–6721 (1983)

    Article  CAS  Google Scholar 

  11. Kern, J.-M., Sauvage, J.-P.: Photoassisted C-C coupling via electron transfer to benzylic halides by a bis(di-imine) copper(I) complex. J. Chem. Soc. Chem. Commun., 546–548 (1987)

    Google Scholar 

  12. Armaroli, N.: Photoactive mono- and polynuclear Cu(I)-phenanthrolines. A viable alternative to Ru(II)-polypyridines. Chem. Soc. Rev. 30, 113–124 (2001)

    Article  CAS  Google Scholar 

  13. Kalyanasundaram, K.: Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord. Chem. Rev. 46, 159–244 (1982)

    Article  CAS  Google Scholar 

  14. Pirtsch, M., Paria, S., Matsuno, T., Isobe, H., Reiser, O.: [Cu(dap)2Cl] as an efficient visible-light driven photoredox catalyst in carbon-carbon bound forming reactions. Chem. Eur. J. 18, 7336–7340 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Frey, J., Kraus, T., Heitz, V., Sauvage, J.-P.: Synthesis of a bis-macrocycle containing two back-to-back rigidly connected 1,10-phenanthroline units as a central core and its incorporation in a handcuff-like catenane. Chem. Eur. J. 13, 7584–7594 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Baralle, A., Fensterbank, L., Goddard, J.-P., Ollivier, C.: Aryl radical formation by copper(I) photocatalyzed reduction of diaryliodonium salt: NMR evidence for Cu(II)/Cu(I) mechanism. Chem. Eur. J. 19, 10809–10813 (2013)

    Article  CAS  PubMed  Google Scholar 

  17. Diestrich-Buchecker, C.O., Marnot, P.A., Sauvage, J.-P.: Direct synthesis of disubstituted aromatic polyimine chelates. Tetrahedron Lett. 23, 5291–5294 (1982)

    Article  Google Scholar 

  18. Cuttell, D.G., Kuang, S.-M., Fanwick, P.E., McMillin, D.R., Walton, R.A.: Simple Cu(I) complexes with unprecedented excited state lifetimes. J. Am. Chem. Soc. 124, 6–7 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Knorn, M., Rawner, T., Czerwieniec, R., Reiser, O.: [Copper(phenanthroline)(bisisonitrile)]+-complexes for the visible-light mediated atom transfer radical addition and allylation reaction. ACS Catal. 5, 5186–5193 (2015)

    Article  CAS  Google Scholar 

  20. Wang, B., Shelar, D.P., Han, X.-Z., Li, T.-T., Guan, X., Lu, W., Liu, K., Chen, Y., Fu, W.-F., Che, C.-M.: Long-lived excited states of zwitterionic copper(I) complexes for photoinduced cross-dehydrogenative coupling reactions. Chem. Eur. J. 21, 1184–1190 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. Engl, S., Reiser, O.: Making copper photocatalysis even more robust and economic: photoredox catalysis with [CuII(dmp)2Cl]Cl. Eur. J. Org. Chem. 1523, 1523–1533 (2020)

    Google Scholar 

  22. Hossain, A., Engl, S., Lutsker, E., Reiser, O.: Visible-light-mediated regioselective chlorosulfonylation of alkenes and alkynes: introducing the Cu(II) complex [Cu(dap)Cl2] to photochemical ATRA reactions. ACS Catal. 9, 1103 (2019)

    Article  CAS  Google Scholar 

  23. Cetin, M.M., Hodson, R.T., Hart, C.R., Cordes, D.B., Findlater, M., Casadonte Jr., D.J., Cazzolino, A.F., Mayer, M.F.: Charaterization and photocatalystic behavior of 2,9-di(aryl)-1,10-phenanthroline copper (I) complexes. Dalton Trans. 46, 6553–6569 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. Paria, S., Pirtsch, M., Kais, V., Reiser, O.: Visible-light-induced intermolecular atom-transfer radical addition of benzyl halides to olefins: facile synthesis of tetrahydroquinolines. Synthesis. 45, 2689–2698 (2013)

    Article  CAS  Google Scholar 

  25. Rawner, T., Lutsker, E., Kaiser, C.A., Reiser, O.: The different faces of photoredox catalysis: visible-light-mediated atom transfer radical addition (ATRA) reaction of perfluoroalkyl iodides with styrenes and phenylacetylenes. ACS Catal. 8, 3950–3956 (2018)

    Article  CAS  Google Scholar 

  26. Guo, Q., Wang, M., Wang, Y., Xu, Z., Wang, R.: Photoinduced, copper-catalyzed three components cyanofluoroalkylation of alkenes with fluoroalkyl iodides as fluoroalkylation reagents. Chem. Commun. 53, 12317–12320 (2017)

    Article  CAS  Google Scholar 

  27. Fumagalli, G., Rabet, P.T.G., Boyd, S., Greaney, M.F.: Three-component azidation of styrene-type double bounds: light-swithchable behavior of a copper photoredox catalyst. Angew. Chem. Int. Ed. 54, 11481–11484 (2015)

    Article  CAS  Google Scholar 

  28. Yie Ng, Y., Jiaying Tan, L., Mei Ng, S., Tin Chai, Y., Ganguly, R., Du, Y., Yeow, E.K.L., Sen Soo, H.: Spectroscopic characterization and mechanistic studies on visible light photoredox carbon-carbon bound formation by bis(arylimino)acenaphthene copper photosensitizers. ACS Catal. 8, 11277–11286 (2018)

    Article  CAS  Google Scholar 

  29. Tang, X.-J., Dolbier Jr., W.R.: Efficient Cu-catalyzed atom transfer radical addition reactions of fluoroalkylsulfonyl chlorides with electro-deficient alkenes induces by visible light. Angew. Chem. Int. Ed. 54, 4246–4249 (2015)

    Article  CAS  Google Scholar 

  30. Bengal, D.B., Kachkovskyi, G., Knorn, M., Rawner, T., Bhanage, B.M., Reiser, O.: Trifluromethylchlorosulfonylation of alkenes: evidence for inner-sphere mechanism by copper phenanthroline photoredox catalyst. Angew. Chem. Int. 54, 6999–7002 (2015)

    Article  CAS  Google Scholar 

  31. Pagire, S.K., Paria, S., Reiser, O.: Synthesis of β-hydrosulfones from sulfonyl chlorides and alkenes utilizing visible light photocatalytic sequences. Org. Lett. 18, 2106–2109 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. Rawner, T., Knorn, M., Lutsker, E., Hossain, A., Reiser, O.: Synthesis of trifluoromethylated sultones from alkenols using a copper photoredox catalyst. J. Org. Chem. 81, 7139–7147 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Z., Tang, X., Thomoson, C.S., Dolbier Jr., W.R.: Photoredox-catalyzed intramolecular amminodifluoromethylation of unactivated alkenes. Org. Lett. 17, 3528–3531 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. Alkan-Zambada, M., Hu, X.: Cu photoredox catalysts supported by a 4,6-disubstitued 2,2-bipyridine ligand: application in chlorotrifluoromethylation of alkenes. Organometallics. 37, 3928–3935 (2018)

    Article  CAS  Google Scholar 

  35. Rabet, P.T.G., Fumagalli, G., Boyd, S., Greaney, M.F.: Benzylic C-H azidation using the Zhdankin reagent and a copper photoredox catalyst. Org. Lett. 18, 1646–1649 (2016)

    Article  CAS  PubMed  Google Scholar 

  36. Creutz, S.E., Lotito, K.J., Fu, G.C., Peters, J.C.: Photoinduced Ullmann C-N coupling: demonstrating the viability of a radical pathway. Science. 338, 647–641 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. Majek, M., von Wangelin, A.J.: Ambient-light-mediated copper-catalyzed C-C and C-N bound formation. Angew. Chem. Int. Ed. 52, 5919–5921 (2013)

    Article  CAS  Google Scholar 

  38. Bissember, A.C., Lundgren, R.J., Creutz, S.E., Peters, J.C., Fu, G.C.: Transition-metal-catalyzed alkylations of amines with alkylhalides: Photoinduces, copper-catalyzed couplings of carbazoles. Angew. Chem. Int. Ed. 52, 5129–5133 (2013)

    Article  CAS  Google Scholar 

  39. Ziegler, D.T., Choi, J., Munoz-Molina, J., Bissember, A.C., Peters, J.C., Fu, G.C.: A versatile approach to Ullmann C-N coupling at room temperature: new families of nucleophiles and electrophiles for photoinduced, copper-catalyzed processes. J. Am. Chem. Soc. 135, 13107–13112 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. Kainz, Q.M., Matier, C.D., Bartoszevicz, A., Zultanski, S.L., Peters, J.C., Fu, G.C.: Asymmetric copper-catalyzed C-N cross-coupling induced by visible light. Science. 351, 681–684 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahn, J.M., Peters, J.C., Fu, G.C.: Design of a photoredox catalyst that enable the direct synthesis of carbamate-protected primary amines via photoinduced, copper-catalyzed N-alkylation reactions of unactivated secondary halides. J. Am. Chem. Soc. 139, 18101–18106 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao, W., Wurz, R.P., Peters, J.C., Fu, G.C.: Photoinduced, copper-catalyzed decarboxylative C-N coupling to generate protected amines: an alternative to the Curtius rearrangement. J. Am. Chem. Soc. 139, 12153–12156 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uyeda, C., Tan, Y., Fu, G.C., Peters, J.C.: A new family of nucleophiles for photoinduced, copper-catalyzed cross-coupling via a single-electron transfer: reaction of thiols with aryl halides under mild conditions (0°C). J. Am. Chem. Soc. 135, 9548–9552 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. Hernandez-Perez, A.C., Vlassova, A., Collins, S.K.: Toward a visible light mediated photocylization : Cu-based sensitizers for the synthesis of [5]-helicene. Org. Lett. 14, 2988–2991 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Hernandez-Perez, A.C., Collins, S.K.: A visible-light-mediated synthesis of carbazole. Angew. Chem. Int. Ed. 52, 12696–12700 (2013)

    Article  CAS  Google Scholar 

  46. Nicholls, T.P., Constable, G.E., Robertson, J.C., Gardiner, M.G., Bissember, A.C.: Bronsted acid cocatalysis in copper(I)-photocatalyzed a-amino C-H bond functionalization. ACS Catal. 6, 451–457 (2016)

    Article  CAS  Google Scholar 

  47. Michelet, B., Deldaele, C., Kajouj, S., Moucheron, C., Evano, G.: A general copper catalyst for photoredox transformations of organohalides. Org. Lett. 19, 3576–3579 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. Baguia, H., Deldaele, C., Romero, E., Michelet, B., Evano, G.: Copper-catalyzed photoinduced radical domino cyclization of yanamides and cyanamides: a unified entry to rosettacin, luotonin A and deoxyvasicicone. Synthesis. 50, 3022–3030 (2018)

    Article  CAS  Google Scholar 

  49. Minozzi, C., Caron, A., Grenier-Petel, J.-C., Santandrea, J., Collins, S.K.: Heteroleptic copper(I)-based complexes for photocatalysis: combinatorial assembly, discovery and optimization. Angew. Chem. Int. Ed. 57, 5477–5481 (2018)

    Article  CAS  Google Scholar 

  50. Alazet, S., Preindl, J., Simonet-Davin, R., Nicolai, S., Nanchen, A., Meyer, T., Waser, J.: Cyclic hypervalent iodine reagents for azidation: safer reagents and photoredox-catalyzed ring expansion. J. Org. Chem. 83, 12334–12356 (2018)

    Article  CAS  PubMed  Google Scholar 

  51. Alazet, S., Le Vaillant, F., Nicolai, S., Courant, T., Waser, J.: Divergent access to (1,1) and (1,2)-azidolactones from alkenes using hypervent iodine reagents. Chem. Eur. J. 23, 9501–9504 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. Sagadevan, A., Hwang, K.C.: Photo-induced Sonogashira C-C coupling reaction catalyzed by simple copper(I) chloride salt at room temperature. Adv. Synth. Catal. 354, 3421–3427 (2012)

    Article  CAS  Google Scholar 

  53. Sagadevan, A., Lyu, P.-C., Hwang, K.C.: Visible-light-activated copper(I) catalyzed oxidative Csp-Csp cross-coupling reaction: efficient synthesis of unsymmetrical conjugated diynes without ligands and base. Green Chem. 18, 4526–4530 (2016)

    Article  CAS  Google Scholar 

  54. Sagadevan, A., Charpe, V.P., Hwang, K.C.: Copper(I) chloride catalyzed room temperature Csp-Csp homocoupling of terminal alkynes mediated by visible light. Cat. Sci. Technol. 6, 7688–7692 (2016)

    Article  CAS  Google Scholar 

  55. Das, D.K., Pampana, V.K.K., Hwang, K.C.: Copper catalyzed photoredox, synthesis of α-keto esters, quinoxaline, and napthoquinone: controlled oxidation of terminal alkynes to glyoxals. Chem. Sci. 9, 7318–7326 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sagadevan, A., Ragupathi, A., Lin, C.-C., Hwu, J.R., Hwang, K.C.: Visible-light initiated copper(I)-catalyzed oxidative C-N coupling of anilines with terminal alkynes: one-step synthesis of ketoamides. Green Chem. 17, 1113–1119 (2015)

    Article  CAS  Google Scholar 

  57. Ragupathi, A., Sagadevan, A., Lin, C.-C., Hwu, J.-R., Hwang, K.C.: Copper(I)-catalyzed oxidative C-N coupling of 2-aminopyridine with terminal alkynes featuring a C-C bond cleavage promoted by visible light. Chem. Commun. 52, 11756–11759 (2016)

    Article  CAS  Google Scholar 

  58. Segadevan, A., Ragupathi, A., Hwang, K.C.: Visible-light-induced, copper(I)-catalyzed C-N coupling between o-phenylenediamine and terminal alkynes: one-pot synthesis of 3-phenyl-2-hydroxy-quinolines. Photochem. Photobiol. Sci. 12, 2110–2118 (2013)

    Article  CAS  Google Scholar 

  59. Hossain, A., Vidyasagar, A., Eichinger, C., Lankes, C., Phan, J., Rehbein, J., Reiser, O.: Visible-light-accelerated copper(II)-catalyzed region-and chemoselective oxo-azidation of vinyl arenes. Angew. Chem. Int. Ed. 57, 8288–8292 (2018)

    Article  CAS  Google Scholar 

  60. Jennah, O., Beniazza, R., Lozach, C., Jardel, D., Molton, F., Duboc, C., Buffeteau, T., El Kadib, A., Lastécouères, D., Lahcini, M., Vincent, J.-M.: Photoredox catalysis at copper(II) on chitosan: application to photolatent CuAAc. Adv. Synth. Catal. 360, 1–11 (2018)

    Article  CAS  Google Scholar 

  61. Li, Y., Zhou, K., Wen, Z., Cao, S., Shen, X., Lei, M., Gong, L.: Copper(II)-catalyzed asymmetric photoredox reactions: enantioselective alkylation of imines driven by visible light. J. Am. Chem. Soc. 140, 15850–11858 (2018)

    Article  CAS  PubMed  Google Scholar 

  62. Liddle, S.T.: The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015)

    Article  CAS  Google Scholar 

  63. Burrows, H.D., Kemp, T.J.: The photochemistry of the uranyl ion. Chem. Soc. Rev. 3, 139–165 (1974)

    Article  CAS  Google Scholar 

  64. Heidt, L.J., Moon, K.A.: Evidence for pentavalent uranium as an intermediate in the reaction in water between photoactivated uranyl ions and sucrose and closely related substances, and quantum yields for these reactions. J. Am. Chem. Soc. 75, 5803–5809 (1953)

    Article  CAS  Google Scholar 

  65. Heidt, L.J.: Photostationary state kinetics. J. Am. Chem. Soc. 76, 5962–5968 (1954)

    Article  CAS  Google Scholar 

  66. Sakuraba, S., Matsushima, R.: Photochemical reactions of uranyl ions with organic compounds. II. The mechanism of the PhotoOxidation of alcohols by uranyl ions. Bull. Chem. Soc. J. 43, 2359–2363 (1970)

    Article  CAS  Google Scholar 

  67. Matsushima, R.: Mechanism of quenching of the uranyl fluorescence by organic compounds. J. Am. Chem. Soc. 94, 6016–6016 (1972)

    Article  Google Scholar 

  68. Vaidya, V.K., Kabra, B.V., Sharma, R.P., Choudhry, P.: Photo-oxidation of thioacetamide by uranyl ions. Asian J. Chem. 8, 513–516 (1996)

    CAS  Google Scholar 

  69. Sharma, R.P., Kabra, B.V., Vaidya, V.K.: Photochemical oxidation of 2-imidazolidinethione by uranyl acetate. Asian J. Chem. 8, 500–504 (1996)

    CAS  Google Scholar 

  70. Murayama, E., Sato, T.: Metal:catalyzed organic photoreaction. The photooxidation of olefins in the presence of uranyl acetate. Bull. Chem. Soc. J. 51, 3022–3026 (1978)

    Article  CAS  Google Scholar 

  71. Park, Y.-Y., Tomiyasu, H.: Photochemistry of the uranyl ion with alkenes in acetone—water mixtures. J. Photochem. Photobiol. A: Chem. 64, 25–33 (1992)

    Article  CAS  Google Scholar 

  72. Mao, Y., Bakac, A.: Photocatalytic oxidation of aromatic hydrocarbons. Inorg. Chem. 35, 3925–3930 (1996)

    Article  CAS  PubMed  Google Scholar 

  73. Mao, Y., Bakac, A.: Uranyl-sensitized photochemical oxidation of naphthalene by molecular oxygen. Role of electron transfer. J. Phys. Chem. A. 101, 7929–7933 (1997)

    Article  CAS  Google Scholar 

  74. Vialatona, D., Richard, C., Baglio, D., Paya-Perez, A.-B.: Mechanism of the photochemical transformation of naphthalene in water. J. Photochem. Photobiol. A: Chem. 123, 15–19 (1999)

    Article  Google Scholar 

  75. Mao, Y., Bakac, A.: Photocatalytic oxidation of toluene to benzaldehyde by molecular oxygen. J. Phys. Chem. A. 100, 4219–4223 (1996)

    Article  CAS  Google Scholar 

  76. Wang, W.-D., Bakac, A., Espenson, J.H.: Uranium(VI)-catalyzed photooxidation of hydrocarbons with molecular oxygen. Inorg. Chem. 34, 6034–6039 (1995)

    Article  CAS  Google Scholar 

  77. West, J.G., Bedell, T.A., Sorensen, E.J.: The uranyl cation as a visible-light photocatalyst for C(sp3)−H fluorination. Angew. Chem. Int. Ed. 55, 8923–8927 (2016)

    Article  CAS  Google Scholar 

  78. Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O., Huttner, G.: Gold-Komplexe von Diphosphinomethanen, I. Synthese und Kristallstruktur zweikerniger Gold(I)-Verbindungen. Eur. J. Inorg. Chem. 110, 1748–1754 (1977)

    CAS  Google Scholar 

  79. Ma, C., Chan, C.T.-L., To, W.-P., Kwok, W.-M., Che, C.-M.: Deciphering photoluminescence dynamics and reactivity of the luminescent metal–metal-bonded excited state of a binuclear gold(I) phosphine complex containing open coordination sites. Chem. Eur. J. 21, 13888–13893 (2015)

    Article  CAS  PubMed  Google Scholar 

  80. Li, D., Che, C.-M., Kwong, H.-L., Yam, V.W.-W.: Photoinduced C–C bond formation from alkyl halides catalysed by luminescent dinuclear gold(I) and copper(I) complexes. J. Chem. Soc. Dalton Trans., 3325–3329 (1992)

    Google Scholar 

  81. Che, C.-M., Yip, H.-K., Yam, V.W.-W., Cheung, P.-Y., Lai, T.-F., Shieh, S.-J., Peng, S.-M.: Spectroscopy, photoredox properties and X-ray crystal structures of triangular gold(I) and silver(I) phosphine complexes. J. Chem. Soc. Dalton Trans., 427–433 (1992)

    Google Scholar 

  82. Revol, G., McCallum, T., Morin, M., Gagosz, F., Barriault, L.: Photoredox transformations with dimeric gold complexes. Angew. Chem. Int. Ed. 52, 13342–13345 (2013)

    Article  CAS  Google Scholar 

  83. Zidan, M., Rohe, S., McCalluma, T., Barriault, L.: Recent advances in mono and binuclear gold photoredox catalysis. Cat. Sci. Technol. 8, 6019–6028 (2018)

    Article  CAS  Google Scholar 

  84. McCallum, T., Rohe, S., Barriault, L.: Thieme chemistry journals awardees – where are they now? What’s golden: recent advances in organic transformations using photoredox gold catalysis. Synlett. 28, 289–305 (2017)

    CAS  Google Scholar 

  85. Xie, J., Shi, S., Zhang, T., Mehrkens, N., Rudolph, M., Hashmi, A.S.K.: A highly efficient gold-catalyzed photoredox α-C(sp3)-H alkynylation of tertiary aliphatic amines with sunlight. Angew. Chem. Int. Ed. 54, 6046–6050 (2015)

    Article  CAS  Google Scholar 

  86. Xie, J., Zhang, T., Chen, F., Rominger, F., Rudolph, M., Mehrkens, N., Hashmi, A.S.K.: Gold-catalyzed highly selective photoredox C(sp2)−H difluoroalkylation and perfluoroalkylation of hydrazones. Angew. Chem. Int. Ed. 55, 2934–2938 (2016)

    Article  CAS  Google Scholar 

  87. Cannillo, A., Schwantje, T.R., Bégin, M., Barabé, F., Barriault, L.: Gold-catalyzed photoredox C(sp2) cyclization: formal synthesis of (±)-triptolide. Org. Lett. 18, 2592–2595 (2016)

    Article  CAS  PubMed  Google Scholar 

  88. Miloserdov, F.M., Kirillova, M.S., Muratore, M.E., Echavarren, A.M.: Unified total synthesis of pyrroloazocine indole alkaloids sheds light on their biosynthetic relationship. J. Am. Chem. Soc. 140, 5393–5400 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nzulu, F., Telitel, S., Stoffelbach, F., Graff, B., Morlet-Savary, F., Lalevée, J., Fensterbank, L., Goddard, J.-P., Ollivier, C.: A dinuclear gold(I) complex as a novel photoredox catalyst for light-induced atom transfer radical polymerization. Polym. Chem. 6, 4605–4611 (2015)

    Article  CAS  Google Scholar 

  90. McLaughlin, M.P., McCormick, T.M., Eisenberg, R., Holland, P.L.: A stable molecular nickel catalyst for the homogeneous photogeneration of hydrogen in aqueous solution. Chem. Commun. 47, 7989–7991 (2011)

    Article  CAS  Google Scholar 

  91. Han, Z., Shen, L., Brennessel, W.W., Holland, P.L., Eisenberg, R.: Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal- free systems. J. Am. Chem. Soc. 135, 14659–14669 (2013)

    Article  CAS  PubMed  Google Scholar 

  92. Morris, S.A., Wang, J., Zheng, N.: The prowess of photogenerated amine radical cations in cascade reactions: from carbocycles to heterocycles. Acc. Chem. Res. 49, 1957–1968 (2016)

    Article  CAS  PubMed  Google Scholar 

  93. Tellis, J.C., Primer, D.N., Molander, G.A.: Dual catalysis. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science. 345, 433–436 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zuo, Z., Ahneman, D.T., Chu, L., Terret, J.A., Doyle, A.G., MacMillan, D.W.: Dual catalysis. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science. 345, 437–440 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shields, B.J., Kudisch, B., Scholes, G.D., Doyle, A.G.: Long-lived charge-transfer states of nickel(II) aryl halide complexes facilitate bimolecular photoinduced electron transfer. J. Am. Chem. Soc. 140, 3035–3039 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abdiaj, I., Fontana, A., Gomez, M.V., de la Hoz, A., Alcázar, J.: Visible-light-induced nickel-catalyzed Negishi cross-couplings by exogenous-photosensitizer-free photocatalysis. Angew. Chem. Int. Ed. 57, 8473–8477 (2018)

    Article  CAS  Google Scholar 

  97. Grübel, M., Bosque, I., Altmann, P.J., Bach, T., Hess, C.R.: Redox and photocatalytic properties of a Ni II complex with a macrocyclic biquinazoline (Mabiq) ligand. Chem. Sci. 9, 3313–3317 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lim, C.-H., Kudisch, M., Liu, B., Miyake, G.M.: C–N cross-coupling via photoexcitation of nickel–amine complexes. J. Am. Chem. Soc. 140, 7667–7673 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shen, X., Li, Y., Wen, Z., Cao, S., Hou, X., Gong, L.: A chiral nickel DBFOX complex as a bifunctional catalyst for visible-light-promoted asymmetric photoredox reactions. Chem. Sci. 9, 4562–4568 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Parasram, M., Gevorgyan, V.: Visible light-induced transition metal-catalyzed transformations: beyond conventional photosensitizers. Chem. Soc. Rev. 46, 6227–6240 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chuentragool, P., Kurandina, D., Gevorgyan, V.: Catalysis by visible light photoexcited palladium complexes. Angew. Chem. (2018). https://doi.org/10.1002/ange.201813523

  102. Parasram, M., Chuentragool, P., Sarkar, D., Gevorgyan, V.: Photoinduced formation of hybrid aryl Pd-radical species capable of 1,5-HAT: selective catalytic oxidation of silyl ethers into silyl enol ethers. J. Am. Chem. Soc. 138, 6340–6343 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ratushnyy, M., Parasram, M., Wang, Y., Gevorgyan, V.: Palladium-catalyzed atom-transfer radical cyclization at remote unactivated C(sp3 )-H sites: hydrogen-atom transfer of hybrid vinyl palladium radical intermediates. Angew. Chem. Int. Ed. 57, 2712–2715 (2018)

    Article  CAS  Google Scholar 

  104. Pattenden, G.: Simonsen lecture. Cobalt-mediated radical reactions in organic synthesis. Chem. Soc. Rev. 17, 361–382 (1988)

    Article  CAS  Google Scholar 

  105. Dereven’kova, I.A., Salnikova, D.S., Silaghi-Dumitrescub, R., Makarova, S.V., Koifmana, O.I.: Redox chemistry of cobalamin and its derivatives. Coord. Chem. Rev. 309, 68–83 (2016)

    Article  CAS  Google Scholar 

  106. Weiss, M.E., Carreira, E.M.: Total synthesis of (+)-daphmanidin E. Angew. Chem. Int. Ed. 50, 11501–11505 (2011)

    Article  CAS  Google Scholar 

  107. Weiss, M.E., Kreis, L.M., Lauber, A., Carreira, E.M.: Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew. Chem. Int. Ed. 50, 11125–11128 (2011)

    Article  CAS  Google Scholar 

  108. Kreis, L.M., Krautwald, S., Pfeiffer, N., Martin, R.E., Carreira, E.M.: Photocatalytic synthesis of allylic trifluoromethyl substituted styrene derivatives in batch and flow. Org. Lett. 15, 1634–1637 (2013)

    Article  CAS  PubMed  Google Scholar 

  109. Pal, A.K., Li, C., Hanan, G.S., Zysman-Colman, E.: Blue-emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 57, 8027–8031 (2018)

    Article  CAS  Google Scholar 

  110. Wenger, O.S.: Is iron the new ruthenium? Chem. Eur. J. 25 (2019). https://doi.org/10.1002/chem.201806148

  111. Liu, Y., Persson, P., Sundström, V., Wärnmark, K.: Fe N-heterocyclic carbene complexes as promising photosensitizers. Acc. Chem. Res. 49, 1477–1485 (2016)

    Article  CAS  PubMed  Google Scholar 

  112. Hockin, B., Li, C., Robertson, N., Zysman-Colman, E.: Photoredox catalysts based on earth-abundant metal complexes. Cat. Sci. Technol. 9, 889–915 (2019)

    Article  CAS  Google Scholar 

  113. Li, S., Zhu, B., Lee, R., Qiao, B., Jiang, Z.: Visible light-induced selective aerobic oxidative transposition of vinyl halides using a tetrahalogenoferrate (III) complex catalyst. Org. Chem. Front. 5, 380–385 (2018)

    Article  CAS  Google Scholar 

  114. Iqbal, M.F., Tominaka, S., Peng, W., Takei, T., Tsunoji, N., Sano, T., Ide, Y.: Iron aquo complex as an efficient and selective homogeneous photocatalyst for organic synthetic reactions. ChemCatChem. 10, 4509–4513 (2018)

    Article  CAS  Google Scholar 

  115. Parisien-Collette, S., Hernandez-Perez, A.C., Collins, S.K.: Photochemical synthesis of carbazoles using an [Fe(phen)3](NTf2)2/O2 catalyst system: catalysis toward sustainability. Org. Lett. 18, 4994–4997 (2016)

    Article  CAS  PubMed  Google Scholar 

  116. Fatur, S.M., Shepard, S.G., Higgins, R.F., Shores, M.P., Damrauer, N.H.: A synthetically tunable system to control MLCT excited-state lifetimes and spin states in iron(II) polypyridines. J. Am. Chem. Soc. 139, 4493–4505 (2017)

    Article  CAS  PubMed  Google Scholar 

  117. Gualandi, A., Marchini, M., Mengozzi, L., Natali, M., Lucarini, M., Ceroni, P., Cozzi, P.G.: Organocatalytic enantioselective alkylation of aldehydes with [Fe(bpy)3]Br2 catalyst and visible light. ACS Catal. 5, 5927–5931 (2015)

    Article  CAS  Google Scholar 

  118. Zhang, Y., Petersen, J.L., Milsmann, C.: A luminescent zirconium(IV) complex as a molecular photosensitizer for visible light photoredox catalysis. J. Am. Chem. Soc. 138, 13115–13118 (2016)

    Article  CAS  PubMed  Google Scholar 

  119. Zhang, Y., Lee, T.S., Petersen, J.L., Milsmann, C.: A zirconium photosensitizer with a long-lived excited state: mechanistic insight into photoinduced single-electron transfer. J. Am. Chem. Soc. 140, 5934–5947 (2018)

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, Y., Petersen, J.L., Milsmann, C.: Photochemical C–C bond formation in luminescent zirconium complexes with CNN pincer ligands. Organometallics. 37, 4488–4499 (2018)

    Article  CAS  Google Scholar 

  121. Büldt, L.A., Wenger, O.S.: Cr(0), Mo(0) and W(0) isocyanide complexes as luminophores and photosensitizers with long-lived excited states. Angew. Chem. Int. Ed. 56, 5676–5682 (2017)

    Article  CAS  Google Scholar 

  122. Büldt, L., Guo, X., Prescimone, A., Wenger, O.S.: A molybdenum(0) isocyanide analog of Ru(2,2′-Bipyridine)32+: strong reductant for photoredox catalysis. Angew. Chem. Int. Ed. 55, 11247–11250 (2016)

    Article  CAS  Google Scholar 

  123. Stevenson, S.M., Higgins, R.F., Shores, M.P., Ferreira, E.M.: Chromium photocatalysis: accessing structural complements to Diels–Alder adducts with electron-deficient dienophiles. Chem. Sci. 8, 654–660 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Goddard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cormier, M., Goddard, JP. (2022). The Applications of Metal-Based Photocatalysis in Organic Synthesis. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_55

Download citation

Publish with us

Policies and ethics