Skip to main content
Log in

Framework nucleic acid-based confined enzyme cascade for efficient synergistic cancer therapy in vivo

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Artificial enzyme cascade systems with confinement effect are highly important in synthetic biology and biomedicine. Herein, a framework nucleic acid-based confined enzyme cascade (FNA-CEC) for synergistic cancer therapy in vivo was developed. The FNA-CEC consisted of glucose oxidase and horseradish peroxidase precisely assembled on an addressable DNA tetrahedron scaffold within few nanometers. Glucose oxidase (GOx) can trigger efficient glucose depletion for tumor starvation therapy, and increase the local concentration of H2O2in situ for enhanced downstream horseradish peroxidase (HRP)-activated prodrug therapy. Due to the spatial-confinement on DNA tetrahedron scaffold, the efficiency of intermediate metabolites transportation between the enzyme cascades was improved. Moreover, FNA-CEC was applied for efficient synergistic cancer therapy in vitro and in vivo. As a simple and efficient approach, the FNA-CEC is expected to expand the toolbox of technologies in synthetic biology and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P. Nat Nanotechnol, 2016, 11: 409–420

    Google Scholar 

  2. Good MC, Zalatan JG, Lim WA. Science, 2011, 332: 680–686

    Google Scholar 

  3. Fu J, Yang YR, Johnson-Buck A, Liu M, Liu Y, Walter NG, Woodbury NW, Yan H. Nat Nanotech, 2014, 9: 531–536

    Google Scholar 

  4. Yang Y, Zhu W, Cheng L, Cai R, Yi X, He J, Pan X, Yang L, Yang K, Liu Z, Tan W, Chen M. Biomaterials, 2020, 246: 119971

    Google Scholar 

  5. Delebecque CJ, Lindner AB, Silver PA, Aldaye FA. Science, 2011, 333: 470–474

    Google Scholar 

  6. Yang Y, He J, Zhu W, Pan X, Yazd HS, Cui C, Yang L, Li X, Li L, Cheng L, Feng L, Wang R, Liu Z, Chen M, Tan W. Theranostics, 2020, 10: 4030–4041

    Google Scholar 

  7. Wang ZG, Ding B. Acc Chem Res, 2014, 47: 1654–1662

    Google Scholar 

  8. Wen ZB, Peng X, Yang ZZ, Zhuo Y, Chai YQ, Liang WB, Yuan R. Chem Commun, 2019, 55: 13414–13417

    Google Scholar 

  9. Wang H, Li C, Liu X, Zhou X, Wang F. Chem Sci, 2018, 9: 5842–5849

    Google Scholar 

  10. Ge Z, Gu H, Li Q, Fan C. J Am Chem Soc, 2018, 140: 17808–17819

    Google Scholar 

  11. Liu M, Zhang Q, Li Z, Gu J, Brennan JD, Li Y. Nat Commun, 2016, 7: 12074

    Google Scholar 

  12. Dong Y, Dong C, Wan F, Yang J, Zhang C. Sci China Chem, 2015, 58: 1515–1523

    Google Scholar 

  13. Li J, Qiu L, Xie S, Zhang J, Zhang L, Liu H, Li J, Zhang X, Tan W. Sci China Chem, 2018, 61: 497–504

    Google Scholar 

  14. Zhao Y, Zuo X, Li Q, Chen F, Chen Y-R, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu Z-S, Xia F, Xu C, Yang Y, Yuan B-F, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang X-B, Yang H, Tan W, Fan C. Sci China Chem, 2020, doi: https://doi.org/10.1007/s11426-020-9864-7

  15. Chen Y, Ke G, Ma Y, Zhu Z, Liu M, Liu Y, Yan H, Yang CJ. J Am Chem Soc, 2018, 140: 8990–8996

    Google Scholar 

  16. Erkelenz M, Kuo CH, Niemeyer CM. J Am Chem Soc, 2011, 133: 16111–16118

    Google Scholar 

  17. Fu J, Liu M, Liu Y, Woodbury NW, Yan H. J Am Chem Soc, 2012, 134: 5516–5519

    Google Scholar 

  18. Ngo TA, Nakata E, Saimura M, Morii T. J Am Chem Soc, 2016, 138: 3012–3021

    Google Scholar 

  19. Sun L, Gao Y, Xu Y, Chao J, Liu H, Wang L, Li D, Fan C. J Am Chem Soc, 2017, 139: 17525–17532

    Google Scholar 

  20. Fu Y, Zeng D, Chao J, Jin Y, Zhang Z, Liu H, Li D, Ma H, Huang Q, Gothelf KV, Fan C. J Am Chem Soc, 2013, 135: 696–702

    Google Scholar 

  21. Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I. Nat Nanotech, 2009, 4: 249–254

    Google Scholar 

  22. Xin L, Zhou C, Yang Z, Liu D. Small, 2013, 9: 3088–3091

    Google Scholar 

  23. Fejerskov B, Jarlstad Olesen MT, Zelikin AN. Adv Drug Deliver Rev, 2017, 118: 24–34

    Google Scholar 

  24. Greco O, Folkes LK, Wardman P, Tozer GM, Dachs GU. Cancer Gene Ther, 2000, 7: 1414–1420

    Google Scholar 

  25. Fu LH, Qi C, Lin J, Huang P. Chem Soc Rev, 2018, 47: 6454–6472

    Google Scholar 

  26. Vander Heiden MG, Cantley LC, Thompson CB. Science, 2009, 324: 1029–1033

    Google Scholar 

  27. Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C. Angew Chem Int Ed, 2015, 54: 2151–2155

    Google Scholar 

  28. Xiang Y, Lu Y. Nat Chem, 2011, 3: 697–703

    Google Scholar 

  29. Liu Q, Ge Z, Mao X, Zhou G, Zuo X, Shen J, Shi J, Li J, Wang L, Chen X, Fan C. Angew Chem Int Ed, 2018, 57: 7131–7135

    Google Scholar 

  30. Liu L, Rong Q, Ke G, Zhang M, Li J, Li Y, Liu Y, Chen M, Zhang XB. Anal Chem, 2019, 91: 3675–3680

    Google Scholar 

  31. Mottley C, Mason RP. J Biol Chem, 1986, 261: 16860–16864

    Google Scholar 

  32. Shen S, Zhu C, Huo D, Yang M, Xue J, Xia Y. Angew Chem Int Ed, 2017, 56: 8801–8804

    Google Scholar 

  33. Li M, Wang C, Di Z, Li H, Zhang J, Xue W, Zhao M, Zhang K, Zhao Y, Li L. Angew Chem Int Ed, 2019, 58: 1350–1354

    Google Scholar 

  34. Knott GJ, Doudna JA. Science, 2018, 361: 866–869

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21705038, 21705043, 21890744, 21705037, 21521063), the National Key R&D Program of China (2019YFA0210100), Natural Science Foundation of Hunan Province (2018JJ3029, 2018JJ3092), China Postdoctoral Science Foundation (2020M672470), and the Open Funding Project of Shandong Key Laboratory of Biochemical Analysis (QUSTHX201808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Ke.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, G., Zhang, M., Xiong, M. et al. Framework nucleic acid-based confined enzyme cascade for efficient synergistic cancer therapy in vivo. Sci. China Chem. 64, 660–665 (2021). https://doi.org/10.1007/s11426-020-9927-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9927-9

Keywords

Navigation