Skip to main content
Log in

Large-area periodic lead halide perovskite nanostructures for lenticular printing laser displays

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lenticular printing technique provides a promising way to realize stereoscopic displays, especially, when microscopic optical structures are integrated into light-emitting materials/devices. Here, we fabricated large-area periodic structures with a spatial resolution at a wavelength scale from hybrid perovskite materials via a space-confined solution growth method. It takes advantages of both high refractive index contrast and high luminescence brightness, which allows the optical modulation on not only the reflection of illumination, but also the light emission from hybrid perovskites. The distributed feedback within these periodic structures significantly improves the degree of polarization and directionality of laser actions while their threshold is also reduced. These findings enable us to present a prototype of lenticular printing laser displays that vary emission colors at different view angles, which may find applications in creating high-resolution and high-contrast holographical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shickman A. Art Bull, 1977, 59: 67–70

    Google Scholar 

  2. Pagidi S, Manda R, Bhattacharyya SS, Lee SG, Song SM, Lim YJ, Lee JH, Lee SH. Adv Mater Interfaces, 2019, 6: 1900841

    Google Scholar 

  3. Ji C, Zhu G, Zhang C, Nam S, Li Q, Xia L, Zhang W, Banerjee D, Guo LJ. Adv Mater Technol, 2017, 2: 1600177

    Google Scholar 

  4. Geng J. Adv Opt Photon, 2013, 5: 456–535

    Google Scholar 

  5. Su M, Sun Y, Chen B, Zhang Z, Yang X, Chen S, Pan Q, Zuev D, Belov P, Song Y. Sci Bull, 2020, doi: https://doi.org/10.1016/j.scib.2020.07.008

  6. England G, Kolle M, Kim P, Khan M, Muñoz P, Mazur E, Aizenberg J. Proc Natl Acad Sci USA, 2014, 111: 15630–15634

    Google Scholar 

  7. Ogawa S, Imada M, Yoshimoto S, Okano M, Noda S. Science, 2004, 305: 227–229

    Google Scholar 

  8. Park HG, Kim SH, Kwon SH, Ju YG, Yang JK, Baek JH, Kim SB, Lee YH. Science, 2004, 305: 1444–1447

    Google Scholar 

  9. Yu D, Hu Y, Shi J, Tang H, Zhang W, Meng Q, Han H, Ning Z, Tian H. Sci China Chem, 2019, 62: 684–707

    Google Scholar 

  10. Quan LN, Rand BP, Friend RH, Mhaisalkar SG, Lee TW, Sargent EH. Chem Rev, 2019, 119: 7444–7477

    Google Scholar 

  11. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photonics, 2019, 13: 460–466

    Google Scholar 

  12. Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Nat Photon, 2015, 9: 679–686

    Google Scholar 

  13. Zhang X, Chen S, Wang X, Pan A. Small Methods, 2019, 3: 1800294

    Google Scholar 

  14. Hu Q, Deng Z, Hu M, Zhao A, Zhang Y, Tan Z, Niu G, Wu H, Tang J. Sci China Chem, 2018, 61: 1581–1586

    Google Scholar 

  15. Zhao C, Zhang D, Qin C. CCS Chem, 2020, 2: 859–869

    Google Scholar 

  16. Zhang W, Peng L, Liu J, Tang A, Hu JS, Yao J, Zhao YS. Adv Mater, 2016, 28: 4040–4046

    Google Scholar 

  17. Li YJ, Lv Y, Zou CL, Zhang W, Yao J, Zhao YS. J Am Chem Soc, 2016, 138: 2122–2125

    Google Scholar 

  18. Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. Nano Lett, 2014, 14: 5995–6001

    Google Scholar 

  19. Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson MV, Trinh MT, Jin S, Zhu XY. Nat Mater, 2015, 14: 636–642

    Google Scholar 

  20. Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum TC. Nat Mater, 2014, 13: 476–480

    Google Scholar 

  21. Jia Y, Kerner RA, Grede AJ, Rand BP, Giebink NC. Nat Photon, 2017, 11: 784–788

    Google Scholar 

  22. Wang K, Wang S, Xiao S, Song Q. Adv Opt Mater, 2018, 6: 1800278

    Google Scholar 

  23. Feng J, Gong C, Gao H, Wen W, Gong Y, Jiang X, Zhang B, Wu Y, Wu Y, Fu H, Jiang L, Zhang X. Nat Electron, 2018, 1: 404–410

    Google Scholar 

  24. Zhang H, Liao Q, Wu Y, Zhang Z, Gao Q, Liu P, Li M, Yao J, Fu H. Adv Mater, 2018, 30: 1706186

    Google Scholar 

  25. Gu Z, Zhou Z, Huang Z, Wang K, Cai Z, Hu X, Li L, Li M, Zhao YS, Song Y. Adv Mater, 2020, 32: 1908006

    Google Scholar 

  26. Tiguntseva E, Chebykin A, Ishteev A, Haroldson R, Balachandran B, Ushakova E, Komissarenko F, Wang H, Milichko V, Tsypkin A, Zuev D, Hu W, Makarov S, Zakhidov A. Nanoscale, 2017, 9: 12486–12493

    Google Scholar 

  27. Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Nature, 2018, 562: 249–253

    Google Scholar 

  28. Tiguntseva EY, Sadrieva Z, Stroganov BV, Kapitonov YV, Komissarenko F, Haroldson R, Balachandran B, Hu W, Gu Q, Zakhidov AA, Bogdanov A, Makarov SV. Appl Surf Sci, 2019, 473: 419–424

    Google Scholar 

  29. Zhao J, Yan Y, Gao Z, Du Y, Dong H, Yao J, Zhao YS. Nat Commun, 2019, 10: 870

    Google Scholar 

  30. Zhou Z, Zhao J, Du Y, Wang K, Liang J, Yan Y, Zhao YS. Angew Chem Int Ed, 2020, 59: 11814–11818

    Google Scholar 

  31. Xu FF, Li YJ, Lv Y, Dong H, Lin X, Wang K, Yao J, Zhao YS. CCS Chem, 2020, 2: 369–375

    Google Scholar 

  32. Feng J, Jiang X, Yan X, Wu Y, Su B, Fu H, Yao J, Jiang L. Adv Mater, 2017, 29: 1603652

    Google Scholar 

  33. Wang Y, Wang P, Zhou X, Li C, Li H, Hu X, Li F, Liu X, Li M, Song Y. Adv Energy Mater, 2018, 8: 1702960

    Google Scholar 

  34. Wu P, Wang J, Jiang L. Mater Horiz, 2020, 7: 338–365

    Google Scholar 

  35. Makarov S, Furasova A, Tiguntseva E, Hemmetter A, Berestennikov A, Pushkarev A, Zakhidov A, Kivshar Y. Adv Opt Mater, 2019, 7: 1800784

    Google Scholar 

  36. Berestennikov AS, Voroshilov PM, Makarov SV, Kivshar YS. Appl Phys Rev, 2019, 6: 031307

    Google Scholar 

  37. Chanana A, Zhai Y, Baniya S, Zhang C, Vardeny ZV, Nahata A. Nat Commun, 2017, 8: 1328

    Google Scholar 

  38. Zou CL, Cui JM, Sun FW, Xiong X, Zou XB, Han ZF, Guo GC. Laser Photonics Rev, 2015, 9: 114–119

    Google Scholar 

  39. Schlaus AP, Spencer MS, Miyata K, Liu F, Wang X, Datta I, Lipson M, Pan A, Zhu XY. Nat Commun, 2019, 10: 265

    Google Scholar 

  40. Wang K, Du Y, Liang J, Zhao J, Xu FF, Liu X, Zhang C, Yan Y, Zhao YS. Adv Mater, 2020, 32: 2001999

    Google Scholar 

  41. Roh K, Zhao L, Gunnarsson WB, Xiao Z, Jia Y, Giebink NC, Rand BP. ACS Photonics, 2019, 6: 3331–3337

    Google Scholar 

  42. Wong AB, Lai M, Eaton SW, Yu Y, Lin E, Dou L, Fu A, Yang P. Nano Lett, 2015, 15: 5519–5524

    Google Scholar 

  43. Dou L, Lai M, Kley CS, Yang Y, Bischak CG, Zhang D, Eaton SW, Ginsberg NS, Yang P. Proc Natl Acad Sci USA, 2017, 114: 7216–7221

    Google Scholar 

  44. Wang KH, Zhu BS, Yao JS, Yao HB. Sci China Chem, 2018, 61: 1047–1061

    Google Scholar 

  45. Yang GL, Zhong HZ. Chin Chem Lett, 2016, 27: 1124–1130

    Google Scholar 

  46. Li J, Liu X, Cui P, Li J, Ye T, Wang X, Zhang C, Zhao YS. Sci China Chem, 2019, 62: 1257–1262

    Google Scholar 

  47. Peng M, Wen W, Chen S, Chen B, Yan K, Hu H, Dong B, Gao X, Yu X, Jiang X, Zou D. Sci China Chem, 2016, 59: 653–658

    Google Scholar 

  48. Sandanayaka ASD, Matsushima T, Bencheikh F, Terakawa S, Potscavage William J. J, Qin C, Fujihara T, Goushi K, Ribierre JC, Adachi C. Appl Phys Express, 2019, 12: 061010

    Google Scholar 

  49. Wang M, Lin J, Hsiao YC, Liu X, Hu B. Nat Commun, 2019, 10: 1614

    Google Scholar 

  50. Dong H, Zhang C, Liu X, Yao J, Zhao YS. Chem Soc Rev, 2020, 49: 951–982

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (2018YFA0704802, 2017YFA0204502) and the National Natural Science Foundation of China (21873105). The authors are grateful to Prof. Chang-Ling Zou at University of Science and Technology of China for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuang Zhang or Yong Sheng Zhao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, H., Dai, C. et al. Large-area periodic lead halide perovskite nanostructures for lenticular printing laser displays. Sci. China Chem. 64, 629–635 (2021). https://doi.org/10.1007/s11426-020-9919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9919-6

Keywords

Navigation