Skip to main content
Log in

Single-wall carbon nanotube-containing cathode interfacial materials for high performance organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Water/alcohol soluble cathode interfacial materials (CIMs) are playing important roles in optoelectronic devices such as organic light emitting diodes, perovskite solar cells and organic solar cells (OSCs). Herein, n-doped solution-processable single-wall carbon nanotubes (SWCNTs)-containing CIMs for OSCs are developed by dispersing SWCNTs to the typical CIMs perylene diimide (PDI) derivatives PDIN and PDINO. The Raman and X-ray photoelectron spectroscopy (XPS) measurement results illustrate the n-doped behavior of SWCNTs by PDIN/PDINO in the blend CIMs. The blended and n-doped SWCNTs can tune the work function and enhance the conductivity of the PDI-derivative/SWCNT (PDI-CNT) composite CIMs, and the composite CIMs can regulate and down-shift the work function of cathode, reduce the charge recombination, improve the charge extraction rate and enhance photovoltaic performance of the OSCs. High power conversion efficiency (PCE) of 17.1% and 17.7% are obtained for the OSCs based on PM6:Y6 and ternary PM6:Y6:PC71BM respectively with the PDI-CNT composites CIMs. These results indicate that the n-doped SWCNT-containing composites, like other n-doped nanomaterials such as zero dimensional fullerenes and two dimensional graphenes, are excellent CIMs for OSCs and could find potential applications in other optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  Google Scholar 

  2. Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr OM, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos TD. Adv Mater, 2019, 31: 1902965

    Article  Google Scholar 

  3. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  Google Scholar 

  4. Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63: 1352–1366

    Article  Google Scholar 

  5. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  Google Scholar 

  6. Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Sci China Chem, 2020, 63: 325–330

    Article  Google Scholar 

  7. Yue D, Khatav P, You F, Darling SB. Energy Environ Sci, 2012, 5: 9163–9172

    Article  Google Scholar 

  8. Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Adv Mater, 2012, 24: 580–612

    Article  Google Scholar 

  9. Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434

    Article  Google Scholar 

  10. Tang H, Liu Z, Hu Z, Liang Y, Huang F, Cao Y. Sci China Chem, 2020, 63: 802–809

    Article  Google Scholar 

  11. Steim R, Kogler FR, Brabec CJ. J Mater Chem, 2010, 20: 2499–2512

    Article  Google Scholar 

  12. Cui C, Li Y, Li Y. Adv Energy Mater, 2017, 7: 1601251

    Article  Google Scholar 

  13. Li X, Zhang W, Usman K, Fang J. Adv Energy Mater, 2018, 8: 1702730

    Article  Google Scholar 

  14. Hong DP, Li X, Li W, Sergei M, Aung KKK, Prashant S. Energy Environ Sci, 2019, 12: 1177–1209

    Article  Google Scholar 

  15. Zhang J, Xue R, Xu G, Chen W, Bian GQ, Wei C, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1705847

    Article  Google Scholar 

  16. He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Adv Mater, 2011, 23: 4636–4643

    Article  Google Scholar 

  17. Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004–2013

    Article  Google Scholar 

  18. Kang Q, Ye L, Xu B, An C, Stuard SJ, Zhang S, Yao H, Ade H, Hou J. Joule, 2019, 3: 227–239

    Article  Google Scholar 

  19. Jiao W, Ma D, Lv M, Chen W, Wang H, Zhu J, Lei M, Chen X. J Mater Chem A, 2014, 2: 14720–14728

    Article  Google Scholar 

  20. Liu J, Zheng N, Hu Z, Wang Z, Yang X, Huang F, Cao Y. Sci China Chem, 2017, 60: 1136–1144

    Article  Google Scholar 

  21. Wang S, Li Z, Xu X, Zhang M, Zhang G, Li Y, Peng Q. J Mater Chem A, 2018, 6: 22503–22507

    Article  Google Scholar 

  22. Pan F, Sun C, Li Y, Tang D, Zou Y, Li X, Bai S, Wei X, Lv M, Chen X, Li Y. Energy Environ Sci, 2019, 12: 3400–3411

    Article  Google Scholar 

  23. Pan F, Bai S, Wei X, Li Y, Tang D, Chen X, Lv M, Li Y. Sci China Mater, 2020, 64: 277–287

    Article  Google Scholar 

  24. Miller AJ, Hatton RA, Silva SRP. Appl Phys Lett, 2006, 89: 133117

    Article  Google Scholar 

  25. Yang Z, Chen T, He R, Guan G, Li H, Qiu L, Peng H. Adv Mater, 2011, 23: 5436–5439

    Article  Google Scholar 

  26. Takenobu T, Takano T, Shiraishi M, Murakami Y, Ata M, Kataura H, Achiba Y, Iwasa Y. Nat Mater, 2003, 2: 683–688

    Article  Google Scholar 

  27. Maldonado S, Morin S, Stevenson KJ. Carbon, 2006, 44: 1429–1437

    Article  Google Scholar 

  28. Grossiord N, Loos J, Meuldijk J, Regev O, Miltner HE, Van Mele B, Koning CE. Compos Sci Tech, 2007, 67: 778–782

    Article  Google Scholar 

  29. Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7: 1966–1973

    Article  Google Scholar 

  30. Lu L, Xu T, Chen W, Lee JM, Luo Z, Jung IH, Park HI, Kim SO, Yu L. Nano Lett, 2013, 13: 2365–2369

    Article  Google Scholar 

  31. Ganji MD, Bakhshandeh A. Commun Theor Phys, 2013, 60: 341–347

    Article  Google Scholar 

  32. Maeda Y, Kimura S, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang X, Yu Y, Nagase S, Kazaoui S, Minami N, Shimizu T, Tokumoto H, Saito R. J Am Chem Soc, 2005, 127: 10287–10290

    Article  Google Scholar 

  33. Lee DY, Na SI, Kim SS. Nanoscale, 2016, 8: 1513–1522

    Article  Google Scholar 

  34. Niu J, Yang D, Ren X, Yang Z, Liu Y, Zhu X, Zhao W, Liu SF. Org Electron, 2017, 48: 165–171

    Article  Google Scholar 

  35. Tung VC, Kim J, Cote LJ, Huang J. J Am Chem Soc, 2011, 133: 9262–9265

    Article  Google Scholar 

  36. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    Article  Google Scholar 

  37. Zhang H, Dong H, Li Y, Jiang W, Zhen Y, Jiang L, Wang Z, Chen W, Wittmann A, Hu W. Adv Mater, 2016, 28: 7466–7471

    Article  Google Scholar 

  38. Blom PWM, Vissenberg MCJM. Mater Sci Eng-R-Rep, 2000, 27: 53–94

    Article  Google Scholar 

  39. Kim JS, Lägel B, Moons E, Johansson N, Baikie ID, Salaneck WR, Friend RH, Cacialli F. Synth Met, 2000, 111–112: 311–314

    Article  Google Scholar 

  40. Davis RJ, Lloyd MT, Ferreira SR, Bruzek MJ, Watkins SE, Lindell L, Sehati P, Fahlman M, Anthony JE, Hsu JWP. J Mater Chem, 2011, 21: 1721–1729

    Article  Google Scholar 

  41. Braun S, Salaneck WR, Fahlman M. Adv Mater, 2009, 21: 1450–1472

    Article  Google Scholar 

  42. Zhu F, Lin X, Liu P, Jiang K, Wei Y, Wu Y, Wang J, Fan S. Nano Res, 2014, 7: 553–560

    Article  Google Scholar 

  43. Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan TM, Sojoudi H, Barlow S, Graham S, Bredas JL, Marder SR, Kahn A, Kippelen B. Science, 2012, 336: 327–332

    Article  Google Scholar 

  44. Mistry KS, Larsen BA, Bergeson JD, Barnes TM, Teeter G, Engtrakul C, Blackburn JL. ACS Nano, 2011, 5: 3714–3723

    Article  Google Scholar 

  45. Samarajeewa DR, Dieckmann GR, Nielsen SO, Musselman IH. Carbon, 2013, 57: 88–98

    Article  Google Scholar 

  46. Samarajeewa DR, Dieckmann GR, Nielsen SO, Musselman IH. Nanoscale, 2012, 4: 4544–4554

    Article  Google Scholar 

  47. Wu G, Zhang ZG, Li Y, Gao C, Wang X, Chen G. ACS Nano, 2017, 11: 5746–5752

    Article  Google Scholar 

  48. Wang H, Hsu JH, Yi SI, Kim SL, Choi K, Yang G, Yu C. Adv Mater, 2015, 27: 6855–6861

    Article  Google Scholar 

  49. Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577

    Article  Google Scholar 

  50. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509

    Article  Google Scholar 

  51. Wang J, Zhang J, Xiao Y, Xiao T, Zhu R, Yan C, Fu Y, Lu G, Lu X, Marder SR, Zhan X. J Am Chem Soc, 2018, 140: 9140–9147

    Article  Google Scholar 

  52. Cowan SR, Street RA, Cho S, Heeger AJ. Phys Rev B, 2011, 83: 035205

    Article  Google Scholar 

  53. Scher H, Montroll EW. Phys Rev B, 1975, 12: 2455–2477

    Article  Google Scholar 

  54. Li Z, Gao F, Greenham NC, McNeill CR. Adv Funct Mater, 2011, 21: 1419–1431

    Article  Google Scholar 

  55. Wu JL, Chen FC, Hsiao YS, Chien FC, Chen P, Kuo CH, Huang MH, Hsu CS. ACS Nano, 2011, 5: 959–967

    Article  Google Scholar 

  56. Mihailetchi VD, Wildeman J, Blom PWM. Phys Rev Lett, 2005, 94: 126602

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91633301, 51863002, 51973042), the Excellent Young Scientific and Technological Talents of Guizhou, China (QKHPTRC[2019]5652) and the Cultivation and Innovation of New Academic Talents of Guizhou Institute of Technology (GZLGXM-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Menglan Lv or Yongfang Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., Bai, S., Liu, T. et al. Single-wall carbon nanotube-containing cathode interfacial materials for high performance organic solar cells. Sci. China Chem. 64, 565–575 (2021). https://doi.org/10.1007/s11426-020-9917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9917-6

Keywords

Navigation