Skip to main content
Log in

Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Polythiophenes, with merits of low cost and high scalability of synthesis, have received growing interest in organic solar cells. To date, the best-performing polythiophene:nonfullerene solar cells exhibit typical power conversion efficiencies (PCEs) of 10%–12%, which is much lower than those employing PM6- and D18-type polymers. This inferior performance is mostly limited by the improper miscibility between polythiophene and acceptors. Efforts on engineering the molecular structure to systematically tune the miscibility are required. With the aid of group contribution calculations, the miscibility of polythiophene:nonfullerene blend system was finely tuned by varying the ratios of siloxane-terminated chains and alkyl chains in ester-substituted polythiophenes through random copolymerization. Based on a series of the polythiophene and nonfullerene acceptors, the detailed analysis of blend miscibility and performance reveals a surprising anticorrelation between the Flory-Huggins interaction parameter (χaa) and the optimal time of solvent vapor annealing for device performance across these systems. Primarily due to the slightly higher χaa, the blend of PDCBT-Cl-Si5 and ITIC-Th1 results in a record-high PCE of 12.85% in polythiophene: nonfullerene solar cells. The results not only provide a calculation-guided approach for molecular design but also prove that precise control of the miscibility is an effective way to design high-performance polythiophene:nonfullerene blends and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu YS, Lin YC, Hung SY, Chen CK, Chiang YC, Chueh CC, Chen WC. Macromolecules, 2020, 53: 4968–4981

    Article  CAS  Google Scholar 

  2. Fei Z, Boufflet P, Wood S, Wade J, Moriarty J, Gann E, Ratcliff EL, McNeill CR, Sirringhaus H, Kim JS, Heeney M. J Am Chem Soc, 2015, 137: 6866–6879

    Article  CAS  PubMed  Google Scholar 

  3. Huang F, Bo Z, Geng Y, Wang X, Wang L, Ma Y, Hou J, Hu W, Pei J, Dong H, Wang S, Li Z, Shuai Z, Li Y, Cao Y. Acta Polym Sin, 2019, 50: 988–1046

    Google Scholar 

  4. Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y. Energy Environ Sci, 2012, 5: 7943–7949

    Article  CAS  Google Scholar 

  5. Xu X, Zhang G, Yu L, Li R, Peng Q. Adv Mater, 2019, 31: 1906045

    Article  CAS  Google Scholar 

  6. Wang Q, Qin Y, Li M, Ye L, Geng Y. Adv Energy Mater, 2020, 10: 2002572

    Article  CAS  Google Scholar 

  7. Wadsworth A, Hamid Z, Bidwell M, Ashraf RS, Khan JI, Anjum DH, Cendra C, Yan J, Rezasoltani E, Guilbert AAY, Azzouzi M, Gasparini N, Bannock JH, Baran D, Wu H, de Mello JC, Brabec CJ, Salleo A, Nelson J, Laquai F, McCulloch I. Adv Energy Mater, 2018, 8: 1801001

    Article  Google Scholar 

  8. Xiao Z, Geng X, He D, Jia X, Ding L. Energy Environ Sci, 2016, 9: 2114–2121

    Article  CAS  Google Scholar 

  9. Li S, Liu W, Shi M, Mai J, Lau TK, Wan J, Lu X, Li CZ, Chen H. Energy Environ Sci, 2016, 9: 604–610

    Article  CAS  Google Scholar 

  10. Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E. Adv Energy Mater, 2017, 7: 1602269

    Article  Google Scholar 

  11. Liang Q, Jiao X, Yan Y, Xie Z, Lu G, Liu J, Han Y. Adv Funct Mater, 2019, 29: 1807591

    Article  CAS  Google Scholar 

  12. Yang C, Zhang S, Ren J, Gao M, Bi P, Ye L, Hou J. Energy Environ, 2020, 13: 2864–2869

    Article  CAS  Google Scholar 

  13. Jia X, Chen Z, Duan C, Wang Z, Yin Q, Huang F, Cao Y. J Mater Chem C, 2019, 7: 314–323

    Article  CAS  Google Scholar 

  14. Jia X’, Liu G, Chen S, Li Z, Wang Z, Yin Q, Yip HL, Yang C, Duan C, Huang F, Cao Y. ACS Appl Energy Mater, 2019, 2: 7572–7583

    Article  CAS  Google Scholar 

  15. Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J. Chin J Chem, 2018, 36: 491–494

    Article  CAS  Google Scholar 

  16. Wang Q, Li M, Zhang X, Qin Y, Wang J, Zhang J, Hou J, Janssen RAJ, Geng Y. Macromolecules, 2019, 52: 4464–4474

    Article  CAS  Google Scholar 

  17. Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144

    Article  Google Scholar 

  18. Liang Z, Li M, Wang Q, Qin Y, Stuard SJ, Peng Z, Deng Y, Ade H, Ye L, Geng Y. Joule, 2020, 4: 1278–1295

    Article  CAS  Google Scholar 

  19. Leman D, Kelly MA, Ness S, Engmann S, Herzing A, Snyder C, Ro HW, Kline RJ, DeLongchamp DM, Richter LJ. Macromolecules, 2015, 48: 383–392

    Article  CAS  Google Scholar 

  20. Ye L, Zhao W, Li S, Mukherjee S, Carpenter JH, Awartani O, Jiao X, Hou J, Ade H. Adv Energy Mater, 2017, 7: 1602000

    Article  Google Scholar 

  21. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  PubMed  Google Scholar 

  22. Gao M, Liang Z, Geng Y, Ye L. Chem Commun, 2020, 56: 12463–12478

    Article  CAS  Google Scholar 

  23. Ye L, Collins BA, Jiao X, Zhao J, Yan H, Ade H. Adv Energy Mater, 2018, 8: 1703058

    Article  Google Scholar 

  24. Kozub DR, Vakhshouri K, Orme LM, Wang C, Hexemer A, Gomez ED. Macromolecules, 2011, 44: 5722–5726

    Article  CAS  Google Scholar 

  25. Liu F, Chen D, Wang C, Luo K, Gu W, Briseno AL, Hsu JWP, Russell TP. ACS Appl Mater Interfaces, 2014, 6: 19876–19887

    Article  CAS  PubMed  Google Scholar 

  26. Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H. Nat Mater, 2018, 17: 253–260

    Article  CAS  PubMed  Google Scholar 

  27. Nishi T, Wang TT. Macromolecules, 1975, 8: 909–915

    Article  CAS  Google Scholar 

  28. Kouijzer S, Michels JJ, van den Berg M, Gevaerts VS, Turbiez M, Wienk MM, Janssen RAJ. J Am Chem Soc, 2013, 135: 12057–12067

    Article  CAS  PubMed  Google Scholar 

  29. Yuan D, Pan F, Zhang L, Jiang H, Chen M, Tang W, Qin G, Cao Y, Chen J. Sol RRL, 2020, 4: 2000062

    Article  CAS  Google Scholar 

  30. Wang Q, Hu Z, Wu Z, Lin Y, Zhang L, Liu L, Ma Y, Cao Y, Chen J. ACS Appl Mater Interfaces, 2020, 12: 4659–4672

    Article  CAS  PubMed  Google Scholar 

  31. Ma L, Xu Y, Zu Y, Liao Q, Xu B, An C, Zhang S, Hou J. Sci China Chem, 2019, 63: 21–27

    Article  Google Scholar 

  32. Mukherjee S, Jiao X, Ade H. Adv Energy Mater, 2016, 6: 1600699

    Article  Google Scholar 

  33. Ye L, Xiong Y, Li S, Ghasemi M, Balar N, Turner J, Gadisa A, Hou J, O’Connor BT, Ade H. Adv Funct Mater, 2017, 27: 1702016

    Article  Google Scholar 

  34. van Franeker JJ, Hermida-Merino D, Gommes C, Arapov K, Michels JJ, Janssen RAJ, Portale G. Adv Funct Mater, 2017, 27: 1702516

    Article  Google Scholar 

  35. Ma W, Yang C, Heeger A. Adv Mater, 2007, 19: 1387–1390

    Article  CAS  Google Scholar 

  36. Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao Y. Adv Mater, 2017, 29: 1703906

    Article  Google Scholar 

  37. Ye L, Li S, Liu X, Zhang S, Ghasemi M, Xiong Y, Hou J, Ade H. Joule, 2019, 3: 443–458

    Article  CAS  Google Scholar 

  38. Pei D, Wang Z, Peng Z, Zhang J, Deng Y, Han Y, Ye L, Geng Y. Macromolecules, 2020, 53: 4490–4500

    Article  CAS  Google Scholar 

  39. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  40. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  CAS  Google Scholar 

  41. Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Sci China Chem, 2020, 63: 325–330

    Article  CAS  Google Scholar 

  42. Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019, 63: 265–271

    Article  Google Scholar 

  43. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073207, 22075200, 51703158, 51933008). L.Y. was also supported by the Peiyang Scholar Program of Tianjin University and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, 2020-skllmd-11). M. L. thanks the Peiyang Young Junior Faculty Program of Tianjin University (2019XRG-0021) and Independent Innovation Fund of Tianjin University (2020XZC-0105). L.Y. acknowledges the merit beam-time (Proposal ID: 15692) approved by Australian Synchrotron. GIWAXS characterizations by N.K. were performed on the SAXS/WAXS beamline at the Australian Synchrotron, part of ANSTO. Dr. Xuechen Jiao (Monash University) was appreciated for the kind help in GIWAXS data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miaomiao Li, Long Ye or Yanhou Geng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, M., Peng, Z. et al. Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells. Sci. China Chem. 64, 478–487 (2021). https://doi.org/10.1007/s11426-020-9890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9890-6

Navigation