Skip to main content
Log in

A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In order to meet the requirements for making organic solar cells (OSCs) through solution printing techniques, great efforts have been devoted into developing high performance OSCs with relatively thicker active layers. In this work, a thick-film (300 nm) ternary OSC with a power conversion efficiency of 14.3% is fabricated by introducing phenyl-C61-butyric-acid-methyl ester (PC61BM) into a PBDB-T-2Cl:BTP-4F host blend. The addition of PC61BM is found to be helpful for improving the hole and electron mobilities, and thus facilitates charge transport as well as suppresses charge recombination in the active layers, leading to the improved efficiencies of OSCs with relatively thicker active layers. Our results demonstrate the feasibility of employing fullerene derivative PC61BM to construct a high-efficiency thick-film ternary device, which would promote the development of thick layer ternary OSCs to fulfill the requirements of future roll to roll production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Heeger AJ. Chem Soc Rev, 2010, 39: 2354

    CAS  PubMed  Google Scholar 

  2. Mazzio KA, Luscombe CK. Chem Soc Rev, 2015, 44: 78–90

    CAS  PubMed  Google Scholar 

  3. Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 394–412

    CAS  Google Scholar 

  4. Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    CAS  Google Scholar 

  5. Li Y, Xu G, Cui C, Li Y. Adv Energy Mater, 2018, 8: 1701791

    Google Scholar 

  6. Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868

    Google Scholar 

  7. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

  8. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    CAS  Google Scholar 

  9. Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397–7457

    CAS  PubMed  Google Scholar 

  10. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    CAS  Google Scholar 

  11. Steirer KX, Ndione PF, Widjonarko NE, Lloyd MT, Meyer J, Ratcliff EL, Kahn A, Armstrong NR, Curtis CJ, Ginley DS, Berry JJ, Olson DC. Adv Energy Mater, 2011, 1: 813–820

    CAS  Google Scholar 

  12. Zhang, K, Huang, F, Cao, Y. Acta Polymerica Sinica, 2017(9): 1400–1414

  13. Kang Q, Yang B, Xu Y, Xu B, Hou J. Adv Mater, 2018, 30: 1801718

    Google Scholar 

  14. Huang J, Wang H, Yan K, Zhang X, Chen H, Li CZ, Yu J. Adv Mater, 2017, 29: 1606729

    Google Scholar 

  15. Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip HL, Peng X, Cao Y, Chen Y. Nat Photon, 2017, 11: 85–90

    CAS  Google Scholar 

  16. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    CAS  PubMed  Google Scholar 

  17. Dennler G, Scharber MC, Brabec CJ. Adv Mater, 2009, 21: 1323–1338

    CAS  Google Scholar 

  18. Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC. Mater Today, 2012, 15: 36–49

    Google Scholar 

  19. Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395

    CAS  PubMed  Google Scholar 

  20. Jin Y, Chen Z, Xiao M, Peng J, Fan B, Ying L, Zhang G, Jiang XF, Yin Q, Liang Z, Huang F, Cao Y. Adv Energy Mater, 2017, 7: 1700944

    Google Scholar 

  21. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293

    CAS  PubMed  Google Scholar 

  22. Price SC, Stuart AC, Yang L, Zhou H, You W. J Am Chem Soc, 2011, 133: 4625–4631

    CAS  PubMed  Google Scholar 

  23. Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, Peng J, Ma Y, Cao Y. Adv Mater, 2014, 26: 2586–2591

    CAS  PubMed  Google Scholar 

  24. Hu X, Yi C, Wang M, Hsu CH, Liu S, Zhang K, Zhong C, Huang F, Gong X, Cao Y. Adv Energy Mater, 2014, 4: 1400378

    Google Scholar 

  25. Nian L, Chen Z, Herbst S, Li Q, Yu C, Jiang X, Dong H, Li F, Liu L, Würthner F, Chen J, Xie Z, Ma Y. Adv Mater, 2016, 28: 7521–7526

    CAS  PubMed  Google Scholar 

  26. Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 465–475

    CAS  Google Scholar 

  27. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem Soc Rev, 2019, 48: 1596–1625

    CAS  PubMed  Google Scholar 

  28. Luo Z, Sun C, Chen S, Zhang ZG, Wu K, Qiu B, Yang C, Li Y, Yang C. Adv Energy Mater, 2018, 8: 1800856

    Google Scholar 

  29. Zhang T, Zeng G, Ye F, Zhao X, Yang X. Adv Energy Mater, 2018, 8: 1801387

    Google Scholar 

  30. Fan Q, Wang Y, Zhang M, Wu B, Guo X, Jiang Y, Li W, Guo B, Ye C, Su W, Fang J, Ou X, Liu F, Wei Z, Sum TC, Russell TP, Li Y. Adv Mater, 2018, 30: 1704546

    Google Scholar 

  31. Duan C, Peng Z, Colberts FJM, Pang S, Ye L, Awartani OM, Hendriks KH, Ade H, Wienk MM, Janssen RAJ. ACS Appl Mater Interfaces, 2019, 11: 10794–10800

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Z, Liu X, Jiang H, Zhou X, Zhang L, Pan F, Qiao X, Ma D, Ma W, Ding L, Cao Y, Chen J. Sol RRL, 2019, 3: 1900079

    Google Scholar 

  33. Gasparini N, Salleo A, McCulloch I, Baran D. Nat Rev Mater, 2019, 4: 229–242

    Google Scholar 

  34. Yu R, Yao H, Hou J. Adv Energy Mater, 2018, 8: 1702814

    Google Scholar 

  35. Cheng P, Zhan X. Mater Horiz, 2015, 2: 462–485

    CAS  Google Scholar 

  36. Dai S, Li T, Wang W, Xiao Y, Lau TK, Li Z, Liu K, Lu X, Zhan X. Adv Mater, 2018, 30: 1706571

    Google Scholar 

  37. Liang RZ, Zhang Y, Savikhin V, Babics M, Kan Z, Wohlfahrt M, Wehbe N, Liu S, Duan T, Toney MF, Laquai F, Beaujuge PM. Adv Energy Mater, 2019, 9: 1802836

    Google Scholar 

  38. Shi H, Xia R, Zhang G, Yip HL, Cao Y. Adv Energy Mater, 2019, 9: 1803438

    Google Scholar 

  39. Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952–959

    CAS  Google Scholar 

  40. Huang D, Bian F, Zhu D, Bao X, Hong C, Zhou P, Huang Y, Yang C. J Phys Chem C, 2019, 123: 14976–14984

    CAS  Google Scholar 

  41. Zhao W, Li S, Zhang S, Liu X, Hou J. Adv Mater, 2017, 29: 1604059

    Google Scholar 

  42. Lu H, Zhang J, Chen J, Liu Q, Gong X, Feng S, Xu X, Ma W, Bo Z. Adv Mater, 2016, 28: 9559–9566

    CAS  PubMed  Google Scholar 

  43. Amorim CA, Cavallari MR, Santos G, Fonseca FJ, Andrade AM, Mergulhão S. J Non-Crystalline Solids, 2012, 358: 484–491

    CAS  Google Scholar 

  44. Goh C, Kline RJ, McGehee MD, Kadnikova EN, Fréchet JMJ. Appl Phys Lett, 2005, 86: 122110

    Google Scholar 

  45. Bartelt JA, Lam D, Burke TM, Sweetnam SM, McGehee MD. Adv Energy Mater, 2015, 5: 1500577

    Google Scholar 

  46. Proctor CM, Love JA, Nguyen TQ. Adv Mater, 2014, 26: 5957–5961

    CAS  PubMed  Google Scholar 

  47. Kirchartz T, Agostinelli T, Campoy-Quiles M, Gong W, Nelson J. J Phys Chem Lett, 2012, 3: 3470–3475

    CAS  PubMed  Google Scholar 

  48. Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207

    Google Scholar 

  49. Zhang H, Yao H, Zhao W, Ye L, Hou J. Adv Energy Mater, 2016, 6: 1502177

    Google Scholar 

  50. Chen LM, Hong Z, Li G, Yang Y. Adv Mater, 2009, 21: 1434–1449

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21835006, 21704004, 91633301, 51673201), the Chinese Academy of Sciences (KJZD-EW-J01). We would like to thank the Innovation Project supported by Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-201903)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqing Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Xu, Y., Zu, Y. et al. A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Sci. China Chem. 63, 21–27 (2020). https://doi.org/10.1007/s11426-019-9556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9556-7

Keywords

Navigation