Skip to main content
Log in

Atomically dispersed copper species on ceria for the low-temperature water-gas shift reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The structure of copper species, dispersed on nanostructured ceria (particles, rods and cubes), was analyzed by scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS). It was interestingly found that the density of surface oxygen vacancies (or defect sites), induced by the shape of ceria, determined the geometrical structure and the chemical state of copper species. Atomically dispersed species and monolayers containing few to tens of atoms were formed on ceria particles and rods owing to the enriched anchoring sites, but copper clusters/particles co-existed, together with the highly dispersed atoms and monolayers, on cubic ceria. The atomically dispersed copper sites and monolayers interacted strongly with ceria, involving a remarkable charge transfer from copper to ceria at their interfaces. The activity for the low-temperature water-gas shift reaction of the Cu/CeO2 catalysts was associated with the fraction of the positively-charged copper atoms, demonstrating that the active sites could be tuned by dispersing Cu species on shape-controlled ceria particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Senanayake SD, Stacchiola D, Rodriguez JA. Acc Chem Res, 2013, 46: 1702–1711

    Article  CAS  Google Scholar 

  2. Konsolakis M. Appl Catal B-Environ, 2016, 198: 49–66

    Article  CAS  Google Scholar 

  3. Zhou Y, Chen A, Ning J, Shen W. Chin J Catal, 2020, 41: 928–937

    Article  CAS  Google Scholar 

  4. Rodriguez J, Graciani J, Evans J, Park J, Yang F, Stacchiola D, Senanayake S, Ma S, Pérez M, Liu P, Sanz J, Hrbek J. Angew Chem, 2009, 121: 8191–8194

    Article  Google Scholar 

  5. Yan H, Yang C, Shao WP, Cai LH, Wang WW, Jin Z, Jia CJ. Nat Commun, 2019, 10: 3470

    Article  Google Scholar 

  6. Gawade P, Mirkelamoglu B, Ozkan US. J Phys Chem C, 2010, 114: 18173–18181

    Article  CAS  Google Scholar 

  7. Si R, Raitano J, Yi N, Zhang L, Chan SW, Flytzani-Stephanopoulos M. Catal Today, 2012, 180: 68–80

    Article  CAS  Google Scholar 

  8. Yao SY, Xu WQ, Johnston-Peck AC, Zhao FZ, Liu ZY, Luo S, Senanayake SD, Martínez-Arias A, Liu WJ, Rodriguez JA. Phys Chem Chem Phys, 2014, 16: 17183–17195

    Article  CAS  Google Scholar 

  9. Ren Z, Peng F, Li J, Liang X, Chen B. Catalysts, 2017, 7: 48

    Article  Google Scholar 

  10. Chen A, Yu X, Zhou Y, Miao S, Li Y, Kuld S, Sehested J, Liu J, Aoki T, Hong S, Camellone MF, Fabris S, Ning J, Jin C, Yang C, Nefedov A, Wöll C, Wang Y, Shen W. Nat Catal, 2019, 2: 334–341

    Article  CAS  Google Scholar 

  11. Ning J, Zhou Y, Chen A, Li Y, Miao S, Shen W. Catal Today, 2020, 357C: 460–467

    Article  Google Scholar 

  12. May YA, Wang WW, Yan H, Wei S, Jia CJ. Chin J Catal, 2020, 41: 1017–1027

    Article  CAS  Google Scholar 

  13. Zabilskiy M, Djinović P, Tchernychova E, Tkachenko OP, Kustov LM, Pintar A. ACS Catal, 2015, 5: 5357–5365

    Article  CAS  Google Scholar 

  14. Lin L, Yao S, Liu Z, Zhang F, Li N, Vovchok D, Martínez-Arias A, Castañeda R, Lin J, Senanayake SD, Su D, Ma D, Rodriguez JA. J Phys Chem C, 2018, 122: 12934–12943

    Article  CAS  Google Scholar 

  15. Zou Q, Zhao Y, Jin X, Fang J, Li D, Li K, Lu J, Luo Y. Appl Surf Sci, 2019, 494: 1166–1176

    Article  CAS  Google Scholar 

  16. Ning J, Dong C, Li M, Zhou Y, Shen W. J Chem Phys, 2020, 152: 094708

    Article  CAS  Google Scholar 

  17. Szabová L, Camellone MF, Huang M, Matolín V, Fabris S. J Chem Phys, 2010, 133: 234705

    Article  Google Scholar 

  18. Yang Z, Xie L, Ma D, Wang G. J Phys Chem C, 2011, 115: 6730–6740

    Article  CAS  Google Scholar 

  19. James TE, Hemmingson SL, Ito T, Campbell CT. J Phys Chem C, 2015, 119: 17209–17217

    Article  CAS  Google Scholar 

  20. James TE, Hemmingson SL, Campbell CT. ACS Catal, 2015, 5: 5673–5678

    Article  CAS  Google Scholar 

  21. Chen S, Li L, Hu W, Huang X, Li Q, Xu Y, Zuo Y, Li G. ACS Appl Mater Interfaces, 2015, 7: 22999–23007

    Article  CAS  Google Scholar 

  22. Zhou K, Xu R, Sun X, Chen H, Tian Q, Shen D, Li Y. Catal Lett, 2005, 101: 169–173

    Article  CAS  Google Scholar 

  23. Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M. Appl Catal B-Environ, 2018, 230: 18–28

    Article  CAS  Google Scholar 

  24. Liu L, Yao Z, Deng Y, Gao F, Liu B, Dong L. ChemCatChem, 2011, 3: 978–989

    Article  CAS  Google Scholar 

  25. Wang WW, Yu WZ, Du PP, Xu H, Jin Z, Si R, Ma C, Shi S, Jia CJ, Yan CH. ACS Catal, 2017, 7: 1313–1329

    Article  CAS  Google Scholar 

  26. Gamarra D, Cámara AL, Monte M, Rasmussen SB, Chinchilla LE, Hungría AB, Munuera G, Gyorffy N, Schay Z, Corberán VC, Conesa JC, Martínez-Arias A. Appl Catal B-Environ, 2013, 130–131: 224–238

    Article  Google Scholar 

  27. Piumetti M, Bensaid S, Andana T, Russo N, Pirone R, Fino D. Appl Catal B-Environ, 2017, 205: 455–468

    Article  CAS  Google Scholar 

  28. Dong L, Yao X, Chen Y. Chin J Catal, 2013, 34: 851–864

    Article  CAS  Google Scholar 

  29. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W. Appl Catal A-General, 2005, 288: 116–125

    Article  CAS  Google Scholar 

  30. Luo MF, Song YP, Lu JQ, Wang XY, Pu ZY. J Phys Chem C, 2007, 111: 12686–12692

    Article  CAS  Google Scholar 

  31. Gao Y, Zhang Z, Li Z, Huang W. Chin J Catal, 2020, 41: 1006–1016

    Article  CAS  Google Scholar 

  32. Freund HJ, Heyde M, Kuhlenbeck H, Nilius N, Risse T, Schmidt T, Shaikhutdinov S, Sterrer M. Sci China Chem, 2020, 63: 426–447

    Article  CAS  Google Scholar 

  33. Qi L, Yu Q, Dai Y, Tang C, Liu L, Zhang H, Gao F, Dong L, Chen Y. Appl Catal B-Environ, 2012, 119–120: 308–320

    Article  Google Scholar 

  34. Monte M, Munuera G, Costa D, Conesa JC, Martínez-Arias A. Phys Chem Chem Phys, 2015, 17: 29995–30004

    Article  CAS  Google Scholar 

  35. Wang C, Cheng Q, Wang X, Ma K, Bai X, Tan S, Tian Y, Ding T, Zheng L, Zhang J, Li X. Appl Surf Sci, 2017, 422: 932–943

    Article  CAS  Google Scholar 

  36. Li X, Liu K, Wang W, Bai X. Sci China Chem, 2019, 62: 1704–1709

    Article  CAS  Google Scholar 

  37. Wang Y, Chen Z, Han P, Du Y, Gu Z, Xu X, Zheng G. ACS Catal, 2018, 8: 7113–7119

    Article  CAS  Google Scholar 

  38. Wang X, Rodriguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García M. J Phys Chem B, 2006, 110: 428–434

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21761132031, 21533009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhou or Wenjie Shen.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Zhou, Y. & Shen, W. Atomically dispersed copper species on ceria for the low-temperature water-gas shift reaction. Sci. China Chem. 64, 1103–1110 (2021). https://doi.org/10.1007/s11426-020-9867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9867-x

Keywords

Navigation