Skip to main content
Log in

2D conductive metal-organic frameworks for electronics and spintronics

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials showcase great potentials in both fundamental research and technology development, thanks to their unique chemical and physical properties that are usually not available in corresponding bulk counterparts. As an emerging class of 2D materials, 2D conductive metal-organic frameworks (2D c-MOFs) exhibit the characteristics of pre-designable and tunable structures, excellent crystallinity, intrinsic porosity and superior conductivity. During the past decade, 2D c-MOFs have been rapidly developed in electronics, sensors, energy storage devices, etc. In this review, the electrical, magnetic and quantum properties of 2D c-MOFs are surveyed in detail. Their applications in semiconductor, metal, superconductor, topological insulator and porous magnet are highlighted. We envision that the combination of 2D c-MOFs with quantum materials could evoke rich physics, flexible chemistry and potential applications in both electronics and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Z, Xu J, Chen D, Shen G. Chem Soc Rev, 2015, 44: 161–192

    PubMed  CAS  Google Scholar 

  2. Wang B, Huang W, Chi L, Al-Hashimi M, Marks TJ, Facchetti A. Chem Rev, 2018, 118: 5690–5754

    PubMed  CAS  Google Scholar 

  3. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Adv Mater, 2019, 31: 1801072

    Google Scholar 

  4. Shim J, Park HY, Kang DH, Kim JO, Jo SH, Park Y, Park JH. Adv Electron Mater, 2017, 3: 1600364

    Google Scholar 

  5. Yang F, Cheng S, Zhang X, Ren X, Li R, Dong H, Hu W. Adv Mater, 2018, 30: 1702415

    Google Scholar 

  6. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang HL. Mater Today, 2019, 27: 43–68

    CAS  Google Scholar 

  7. Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R. Chem Soc Rev, 2017, 46: 3185–3241

    PubMed  CAS  Google Scholar 

  8. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444

    PubMed  Google Scholar 

  9. Zhang H. ACS Nano, 2015, 9: 9451–9469

    PubMed  CAS  Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669

    PubMed  CAS  Google Scholar 

  11. Wang Q, O’Hare D. Chem Rev, 2012, 112: 4124–4155

    PubMed  CAS  Google Scholar 

  12. Li LH, Chen Y. Adv Funct Mater, 2016, 26: 2594–2608

    CAS  Google Scholar 

  13. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Chem Rev, 2016, 116: 7159–7329

    PubMed  CAS  Google Scholar 

  14. Tan C, Zhang H. Chem Soc Rev, 2015, 44: 2713–2731

    PubMed  CAS  Google Scholar 

  15. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. Adv Mater, 2014, 26: 992–1005

    PubMed  CAS  Google Scholar 

  16. Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H. Adv Mater, 2016, 28: 4861–4869

    PubMed  CAS  Google Scholar 

  17. Feldman BE, Krauss B, Smet JH, Yacoby A. Science, 2012, 337: 1196–1199

    PubMed  CAS  Google Scholar 

  18. Li P, Wen Y, He X, Zhang Q, Xia C, Yu ZM, Yang SA, Zhu Z, Alshareef HN, Zhang XX. Nat Commun, 2017, 8: 2150

    PubMed  PubMed Central  Google Scholar 

  19. Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J, Yu P, Wang X, He H, Tsang SH, Gao W, Suenaga K, Ma F, Yang C, Lu L, Yu T, Teo EHT, Liu G, Liu Z. Nat Commun, 2017, 8: 394

    PubMed  PubMed Central  Google Scholar 

  20. Wu S, Fatemi V, Gibson QD, Watanabe K, Taniguchi T, Cava RJ, Jarillo-Herrero P. Science, 2018, 359: 76–79

    PubMed  CAS  Google Scholar 

  21. Geim AK, Grigorieva IV. Nature, 2013, 499: 419–425

    PubMed  CAS  Google Scholar 

  22. Zheng C, Zhu J, Yang C, Lu C, Chen Z, Zhuang X. Sci China Chem, 2019, 62: 1145–1193

    CAS  Google Scholar 

  23. Hmadeh M, Lu Z, Liu Z, Gándara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F, Perre E, Ozolins V, Suenaga K, Duan X, Dunn B, Yamamto Y, Terasaki O, Yaghi OM. Chem Mater, 2012, 24: 3511–3513

    CAS  Google Scholar 

  24. Campbell MG, Liu SF, Swager TM, Dincă M. J Am Chem Soc, 2015, 137: 13780–13783

    PubMed  CAS  Google Scholar 

  25. Campbell MG, Sheberla D, Liu SF, Swager TM, Dincă M. Angew Chem Int Ed, 2015, 54: 4349–4352

    CAS  Google Scholar 

  26. Meng Z, Aykanat A, Mirica KA. J Am Chem Soc, 2019, 141: 2046–2053

    PubMed  CAS  Google Scholar 

  27. Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P. J Mater Chem A, 2018, 6: 1188–1195

    CAS  Google Scholar 

  28. Miner EM, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M. Nat Commun, 2016, 7: 10942

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhong H, Ly KH, Wang M, Krupskaya Y, Han X, Zhang J, Zhang J, Kataev V, Büchner B, Weidinger IM, Kaskel S, Liu P, Chen M, Dong R, Feng X. Angew Chem Int Ed, 2019, 58: 10677–10682

    CAS  Google Scholar 

  30. Feng D, Lei T, Lukatskaya MR, Park J, Huang Z, Lee M, Shaw L, Chen S, Yakovenko AA, Kulkarni A, Xiao J, Fredrickson K, Tok JB, Zou X, Cui Y, Bao Z. Nat Energy, 2018, 3: 30–36

    CAS  Google Scholar 

  31. Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang XQ, Hu E, Cao Y, Sun J, Xu Y, Chen L. Angew Chem Int Ed, 2020, 59: 5273–5277

    CAS  Google Scholar 

  32. Liu J, Zhou Y, Xie Z, Li Y, Liu Y, Sun J, Ma Y, Terasaki O, Chen L. Angew Chem Int Ed, 2020, 59: 1081–1086

    CAS  Google Scholar 

  33. Cui Y, Yan J, Chen Z, Zhang J, Zou Y, Sun Y, Xu W, Zhu D. Adv Sci, 2019, 6: 1802235

    Google Scholar 

  34. Ko M, Mendecki L, Mirica KA. Chem Commun, 2018, 54: 7873–7891

    CAS  Google Scholar 

  35. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM. Science, 2001, 294: 1488–1495

    PubMed  CAS  Google Scholar 

  36. Li WH, Deng WH, Wang GE, Xu G. EnergyChem, 2020, 2: 100029

    Google Scholar 

  37. Sun L, Campbell MG, Dincă M. Angew Chem Int Ed, 2016, 55: 3566–3579

    CAS  Google Scholar 

  38. Xie LS, Skorupskii G, Dincă M. Chem Rev, 2020, doi: https://doi.org/10.1021/acs.chemrev.9b00766

  39. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Chem Rev, 2007, 107: 926–952

    PubMed  CAS  Google Scholar 

  40. Skorupskii G, Trump BA, Kasel TW, Brown CM, Hendon CH, Dincă M. Nat Chem, 2020, 12: 131–136

    PubMed  CAS  Google Scholar 

  41. Stallinga P. Adv Mater, 2011, 23: 3356–3362

    PubMed  CAS  Google Scholar 

  42. Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M. J Am Chem Soc, 2014, 136: 8859–8862

    PubMed  CAS  Google Scholar 

  43. Wu G, Huang J, Zang Y, He J, Xu G. J Am Chem Soc, 2017, 139: 1360–1363

    PubMed  CAS  Google Scholar 

  44. Lahiri N, Lotfizadeh N, Tsuchikawa R, Deshpande VV, Louie J. J Am Chem Soc, 2017, 139: 19–22

    PubMed  CAS  Google Scholar 

  45. Park J, Hinckley AC, Huang Z, Feng D, Yakovenko AA, Lee M, Chen S, Zou X, Bao Z. J Am Chem Soc, 2018, 140: 14533–14537

    PubMed  CAS  Google Scholar 

  46. Dong R, Han P, Arora H, Ballabio M, Karakus M, Zhang Z, Shekhar C, Adler P, Petkov PS, Erbe A, Mannsfeld SCB, Felser C, Heine T, Bonn M, Feng X, Cánovas E. Nat Mater, 2018, 17: 1027–1032

    PubMed  CAS  Google Scholar 

  47. Dou JH, Sun L, Ge Y, Li W, Hendon CH, Li J, Gul S, Yano J, Stach EA, Dincă M. J Am Chem Soc, 2017, 139: 13608–13611

    PubMed  CAS  Google Scholar 

  48. Huang X, Sheng P, Tu Z, Zhang F, Wang J, Geng H, Zou Y, Di CA, Yi Y, Sun Y, Xu W, Zhu D. Nat Commun, 2015, 6: 7408

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Clough AJ, Skelton JM, Downes CA, de la Rosa AA, Yoo JW, Walsh A, Melot BC, Marinescu SC. J Am Chem Soc, 2017, 139: 10863–10867

    PubMed  CAS  Google Scholar 

  50. Clough AJ, Orchanian NM, Skelton JM, Neer AJ, Howard SA, Downes CA, Piper LFJ, Walsh A, Melot BC, Marinescu SC. J Am Chem Soc, 2019, 141: 16323–16330

    PubMed  CAS  Google Scholar 

  51. Foster ME, Sohlberg K, Allendorf MD, Talin AA. J Phys Chem Lett, 2018, 9: 481–486

    PubMed  CAS  Google Scholar 

  52. Day RW, Bediako DK, Rezaee M, Parent LR, Skorupskii G, Arguilla MQ, Hendon CH, Stassen I, Gianneschi NC, Kim P, Dincă M. ACS Cent Sci, 2019, 5: 1959–1964

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Foster ME, Sohlberg K, Spataru CD, Allendorf MD. J Phys Chem C, 2016, 120: 15001–15008

    CAS  Google Scholar 

  54. Arora H, Dong R, Venanzi T, Zscharschuch J, Schneider H, Helm M, Feng X, Cánovas E, Erbe A. Adv Mater, 2020, 32: 1907063

    CAS  Google Scholar 

  55. Sun L, Liao B, Sheberla D, Kraemer D, Zhou J, Stach EA, Zakharov D, Stavila V, Talin AA, Ge Y, Allendorf MD, Chen G, Léonard F, Dincă M. Joule, 2017, 1: 168–177

    CAS  Google Scholar 

  56. Jin Z, Yan J, Huang X, Xu W, Yang S, Zhu D, Wang J. Nano Energy, 2017, 40: 376–381

    CAS  Google Scholar 

  57. Zhang J, Deng Y, Hu X, Chi X, Liu J, Chu W, Sun L. Adv Mater, 2019, 31: 1804917

    CAS  Google Scholar 

  58. Dietl T, Ohno H. Rev Mod Phys, 2014, 86: 187–251

    CAS  Google Scholar 

  59. Blundell SJ. Contemporary Phys, 2007, 48: 275–290

    CAS  Google Scholar 

  60. Clemente-León M, Coronado E, Martí-Gastaldo C, Romero FM. Chem Soc Rev, 2011, 40: 473–497

    PubMed  Google Scholar 

  61. Thorarinsdottir AE, Harris TD. Chem Rev, 2020, doi: https://doi.org/10.1021/acs.chemrev.9b00666

  62. Jeon IR, Negru B, Van Duyne RP, Harris TD. J Am Chem Soc, 2015, 137: 15699–15702

    PubMed  CAS  Google Scholar 

  63. DeGayner JA, Jeon IR, Sun L, Dincă M, Harris TD. J Am Chem Soc, 2017, 139: 4175–4184

    PubMed  CAS  Google Scholar 

  64. Liu L, DeGayner JA, Sun L, Zee DZ, Harris TD. Chem Sci, 2019, 10: 4652–4661

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Ohno H. Science, 1998, 281: 951–956

    PubMed  CAS  Google Scholar 

  66. Dong R, Zhang Z, Tranca DC, Zhou S, Wang M, Adler P, Liao Z, Liu F, Sun Y, Shi W, Zhang Z, Zschech E, Mannsfeld SCB, Felser C, Feng X. Nat Commun, 2018, 9: 2637

    PubMed  PubMed Central  Google Scholar 

  67. Li W, Sun L, Qi J, Jarillo-Herrero P, Dincă M, Li J. Chem Sci, 2017, 8: 2859–2867

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Yang C, Dong R, Wang M, Petkov PS, Zhang Z, Wang M, Han P, Ballabio M, Bräuninger SA, Liao Z, Zhang J, Schwotzer F, Zschech E, Klauss HH, Cánovas E, Kaskel S, Bonn M, Zhou S, Heine T, Feng X. Nat Commun, 2019, 10: 3260

    PubMed  PubMed Central  Google Scholar 

  69. Cui Y, Yan J, Chen Z, Xing W, Ye C, Li X, Zou Y, Sun Y, Liu C, Xu W, Zhu D. iScience, 2020, 23: 100812

    PubMed  CAS  Google Scholar 

  70. Yuan K, Song T, Zhu X, Li B, Han B, Zheng L, Li J, Zhang X, Hu W. Small, 2019, 15: 1804845

    Google Scholar 

  71. Jiang Y, Oh I, Joo SH, Buyukcakir O, Chen X, Lee SH, Huang M, Seong WK, Kwak SK, Yoo JW, Ruoff RS. J Am Chem Soc, 2019, 141: 16884–16893

    PubMed  CAS  Google Scholar 

  72. Song X, Wang X, Li Y, Zheng C, Zhang B, Di CA, Li F, Jin C, Mi W, Chen L, Hu W. Angew Chem Int Ed, 2020, 59: 1118–1123

    CAS  Google Scholar 

  73. Chakravarty C, Mandal B, Sarkar P. J Phys Chem C, 2016, 120: 28307–28319

    CAS  Google Scholar 

  74. Jiang W, Liu Z, Mei JW, Cui B, Liu F. Nanoscale, 2019, 11: 955–961

    PubMed  CAS  Google Scholar 

  75. Zhao M, Wang A, Zhang X. Nanoscale, 2013, 5: 10404–10408

    PubMed  CAS  Google Scholar 

  76. Yang L, He X, Dincă M. J Am Chem Soc, 2019, 141: 10475–10480

    PubMed  CAS  Google Scholar 

  77. Wang Y, Lambert F, Rivière E, Guillot R, Herrero C, Tissot A, Halime Z, Mallah T. Chem Commun, 2019, 55: 12336–12339

    CAS  Google Scholar 

  78. Bardeen J, Cooper LN, Schrieffer JR. Phys Rev, 1957, 108: 1175–1204

    CAS  Google Scholar 

  79. Jérome D, Mazaud A, Ribault M, Bechgaard K. J Phyique Lett, 1980, 41: 95–98

    Google Scholar 

  80. Mitsuhashi R, Suzuki Y, Yamanari Y, Mitamura H, Kambe T, Ikeda N, Okamoto H, Fujiwara A, Yamaji M, Kawasaki N, Maniwa Y, Kubozono Y. Nature, 2010, 464: 76–79

    PubMed  CAS  Google Scholar 

  81. Weller TE, Ellerby M, Saxena SS, Smith RP, Skipper NT. Nat Phys, 2005, 1: 39–41

    CAS  Google Scholar 

  82. Zhang X, Zhou Y, Cui B, Zhao M, Liu F. Nano Lett, 2017, 17: 6166–6170

    PubMed  CAS  Google Scholar 

  83. Huang X, Zhang S, Liu L, Yu L, Chen G, Xu W, Zhu D. Angew Chem Int Ed, 2018, 57: 146–150

    CAS  Google Scholar 

  84. Murakami S, Nagaosa N, Zhang SC. Phys Rev Lett, 2004, 93: 156804

    PubMed  Google Scholar 

  85. Hasan MZ, Kane CL. Rev Mod Phys, 2010, 82: 3045–3067

    CAS  Google Scholar 

  86. Bernevig BA, Hughes TL, Zhang SC. Science, 2006, 314: 1757–1761

    PubMed  CAS  Google Scholar 

  87. Wang ZF, Liu Z, Liu F. Nat Commun, 2013, 4: 1471

    PubMed  CAS  Google Scholar 

  88. Wang ZF, Su N, Liu F. Nano Lett, 2013, 13: 2842–2845

    PubMed  CAS  Google Scholar 

  89. Zhao B, Zhang J, Feng W, Yao Y, Yang Z. Phys Rev B, 2014, 90: 201403

    Google Scholar 

  90. Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, El Gabaly F, Yoon HP, Léonard F, Allendorf MD. Science, 2014, 343: 66–69

    PubMed  CAS  Google Scholar 

  91. Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu JH, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H. J Am Chem Soc, 2013, 135: 2462–2465

    PubMed  CAS  Google Scholar 

  92. Kambe T, Sakamoto R, Kusamoto T, Pal T, Fukui N, Hoshiko K, Shimojima T, Wang Z, Hirahara T, Ishizaka K, Hasegawa S, Liu F, Nishihara H. J Am Chem Soc, 2014, 136: 14357–14360

    PubMed  CAS  Google Scholar 

  93. Pal T, Doi S, Maeda H, Wada K, Tan CM, Fukui N, Sakamoto R, Tsuneyuki S, Sasaki S, Nishihara H. Chem Sci, 2019, 10: 5218–5225

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Peng Y, Yang W. Sci China Chem, 2019, 62: 1561–1575

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0207500), the National Natural Science Foundation of China (51973153), and the Natural Science Foundation of Tianjin City (17JCJQJC44600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Liu, J., Zhang, T. et al. 2D conductive metal-organic frameworks for electronics and spintronics. Sci. China Chem. 63, 1391–1401 (2020). https://doi.org/10.1007/s11426-020-9791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9791-2

Keywords

Navigation