Skip to main content
Log in

Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The rational design of dopant-free organic hole-transporting layer (HTL) materials is still a challenge for realizing high-efficient and stable p-i-n planar perovskite solar cells (pero-SCs). Here, we synthesized two π-conjugated small-molecule HTL materials through tailoring the backbone and conjugated side chain to carefully control molecular conformation. The resultant BDT-TPA-sTh containing a planar fused benzo[1,2-b:4,5-b′]dithiophene (BDT) core and a conjugated thiophene side chain showed the planar conformation. X-ray crystallography showed a favorable stacking model in solid states under the parallel-displaced π-π and additional S-π weak-bond supramolecular interactions, thus achieving an obviously increased hole mobility without dopants. As an HTL material in p-i-n planar pero-SCs, the marginal solubility of BDT-TPA-sTh enabled inverse diffusion into the perovskite precursor solution for assisting the subsequent perovskite film growth and passivating the uncoordinated Pb2+ ion defects. As a result, the planar p-i-n pero-SCs exhibited a champion power conversion efficiency (PCE) of 20.5% and enhanced moisture stability. Importantly, the BDT-TPA-sTh HTL material also showed weak thickness-photovoltaic dependence, and the pero-SCs with blade-coated BDT-TPA-sTh as a HTL achieved a 15.30% PCE for the 1-cm2 modularized device. This HTL material design strategy is expected to pave the way toward high-performance, dopant-free and printing large-area planar p-i-n pero-SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051

    CAS  PubMed  Google Scholar 

  2. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591

    PubMed  PubMed Central  Google Scholar 

  3. Snaith HJ. J Phys Chem Lett, 2013, 4: 3623–3630

    CAS  Google Scholar 

  4. Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546

    CAS  PubMed  Google Scholar 

  5. Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682–689

    CAS  Google Scholar 

  6. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photonics, 2019, 13: 460–466

    CAS  Google Scholar 

  7. Chen J, Zhao X, Kim SG, Park NG. Adv Mater, 2019, 31: 1902902

    Google Scholar 

  8. Cao J, Wu B, Peng J, Feng X, Li C, Tang Y. Sci China Chem, 2019, 62: 363–369

    CAS  Google Scholar 

  9. Deng Y, Dong Q, Bi C, Yuan Y, Huang J. Adv Energy Mater, 2016, 6: 1600372

    Google Scholar 

  10. Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L. Adv Mater, 2017, 29: 1701073

    Google Scholar 

  11. Li Y, Zhao Y, Chen Q, Yang YM, Liu Y, Hong Z, Liu Z, Hsieh YT, Meng L, Li Y, Yang Y. J Am Chem Soc, 2015, 137: 15540–15547

    CAS  PubMed  Google Scholar 

  12. Xue R, Zhang M, Xu G, Zhang J, Chen W, Chen H, Yang M, Cui C, Li Y, Li Y. J Mater Chem A, 2018, 6: 404–413

    CAS  Google Scholar 

  13. Li Y, Meng L, Yang YM, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y. Nat Commun, 2016, 7: 10214

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Chen W, Wang L, Tu B, Chen T, Liu B, Yang K, Koh CW, Zhang X, Sun H, Chen G, Feng X, Woo HY, Djurišić AB, He Z, Guo X. Adv Mater, 2019, 31: 1902781

    Google Scholar 

  15. Zhang J, Sun Q, Chen Q, Wang Y, Zhou Y, Song B, Jia X, Zhu Y, Zhang S, Yuan N, Ding J, Li Y. Sol RRL, 2019, 4: 1900421

    Google Scholar 

  16. Chen H, Fu W, Huang C, Zhang Z, Li S, Ding F, Shi M, Li CZ, Jen AKY, Chen H. Adv Energy Mater, 2017, 7: 1700012

    Google Scholar 

  17. Jasieniak JJ, Seifter J, Jo J, Mates T, Heeger AJ. Adv Funct Mater, 2012, 22: 2594–2605

    CAS  Google Scholar 

  18. Bai Y, Lin Y, Ren L, Shi X, Strounina E, Deng Y, Wang Q, Fang Y, Zheng X, Lin Y, Chen ZG, Du Y, Wang L, Huang J. ACS Energy Lett, 2019, 4: 1231–1240

    CAS  Google Scholar 

  19. Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng XC, Huang J. J Am Chem Soc, 2019, 141: 5781–5787

    CAS  PubMed  Google Scholar 

  20. Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442–1446

    CAS  PubMed  Google Scholar 

  21. Liu X, Cheng Y, Liu C, Zhang T, Zhang N, Zhang S, Chen J, Xu Q, Ouyang J, Gong H. Energy Environ Sci, 2019, 12: 1622–1633

    Google Scholar 

  22. Reddy SS, Arivunithi VM, Sree VG, Kwon H, Park J, Kang YC, Zhu H, Noh YY, Jin SH. Nano Energy, 2019, 58: 284–292

    CAS  Google Scholar 

  23. Li E, Li W, Li L, Zhang H, Shen C, Wu Z, Zhang W, Xu X, Tian H, Zhu WH, Wu Y. Sci China Chem, 2019, 62: 767–774

    CAS  Google Scholar 

  24. Reddy SS, Park HY, Kwon H, Shin J, Kim CS, Song M, Jin SH. Chem Eur J, 2018, 24: 6426–6431

    CAS  PubMed  Google Scholar 

  25. Gangala S, Misra R. J Mater Chem A, 2018, 6: 18750–18765

    CAS  Google Scholar 

  26. Urieta-Mora J, Garcia-Benito I, Molina-Ontoria A, Martín N. Chem Soc Rev, 2018, 47: 8541–8571

    CAS  PubMed  Google Scholar 

  27. Yu Z, Sun L. Adv Energy Mater, 2015, 5: 1500213

    Google Scholar 

  28. Reddy SS, Gunasekar K, Heo JH, Im SH, Kim CS, Kim DH, Moon JH, Lee JY, Song M, Jin SH. Adv Mater, 2016, 28: 686–693

    CAS  PubMed  Google Scholar 

  29. Reddy SS, Shin S, Aryal UK, Nishikubo R, Saeki A, Song M, Jin SH. Nano Energy, 2017, 41: 10–17

    CAS  Google Scholar 

  30. Chen R, Bu T, Li J, Li W, Zhou P, Liu X, Ku Z, Zhong J, Peng Y, Huang F, Cheng YB, Fu Z. ChemSusChem, 2018, 11: 1467–1473

    CAS  PubMed  Google Scholar 

  31. Labban A E, Chen H, Kirkus M, Barbe J, Del Gobbo S, Neophytou M, McCulloch I, Eid J. Adv Energy Mater, 2016, 6: 1502101

    Google Scholar 

  32. Liu F, Wu F, Tu Z, Liao Q, Gong Y, Zhu L, Li Q, Li Z. Adv Funct Mater, 2019, 29: 1901296

    Google Scholar 

  33. Huang C, Fu W, Li CZ, Zhang Z, Qiu W, Shi M, Heremans P, Jen AKY, Chen H. J Am Chem Soc, 2016, 138: 2528–2531

    CAS  PubMed  Google Scholar 

  34. Sun X, Xue Q, Zhu Z, Xiao Q, Jiang K, Yip HL, Yan H, Li Z. Chem Sci, 2018, 9: 2698–2704

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397–7457

    CAS  PubMed  Google Scholar 

  36. Li Y. Acc Chem Res, 2012, 45: 723–733

    CAS  PubMed  Google Scholar 

  37. Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena JP, Gao P, Scopelliti R, Mosconi E, Dahmen KH, de Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK. Nat Energy, 2016, 1: 15017

    CAS  Google Scholar 

  38. Li Z, Zhu Z, Chueh CC, Jo SB, Luo J, Jang SH, Jen AKY. J Am Chem Soc, 2016, 138: 11833–11839

    CAS  PubMed  Google Scholar 

  39. Zhang H, Wu Y, Zhang W, Li E, Shen C, Jiang H, Tian H, Zhu WH. Chem Sci, 2018, 9: 5919–5928

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356–3359

    CAS  PubMed  Google Scholar 

  41. Wang Q, Bi C, Huang J. Nano Energy, 2015, 15: 275–280

    CAS  Google Scholar 

  42. Liao SH, Jhuo HJ, Cheng YS, Chen SA. Adv Mater, 2013, 25: 4766–4771

    CAS  PubMed  Google Scholar 

  43. Zhang Y, Zhang D, Tsuboi T, Qiu Y, Duan L. Sci China Chem, 2019, 62: 393–402

    CAS  Google Scholar 

  44. Inés GB, Iwan Z, Javier UM, Juan A, Joaquín C, Josefina P, Alvaro S, Agustín MO, Enrique O, Nazario M, Khaja NM. Adv Funct Mater, 2018, 28: 1801734

    Google Scholar 

  45. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784

    CAS  PubMed  Google Scholar 

  46. Bi D, Yi C, Luo J, Décoppet JD, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M. Nat Energy, 2016, 1: 16142

    CAS  Google Scholar 

  47. Stolterfoht M, Wolff CM, Amir Y, Paulke A, Perdigón-Toro L, Caprioglio P, Neher D. Energy Environ Sci, 2017, 10: 1530–1539

    CAS  Google Scholar 

  48. Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L. Nat Energy, 2016, 1: 16148

    CAS  Google Scholar 

  49. Cai F, Yan Y, Yao J, Wang P, Wang H, Gurney RS, Liu D, Wang T. Adv Funct Mater, 2018, 28: 1801985

    Google Scholar 

  50. Jiang T, Chen Z, Chen X, Chen X, Xu X, Liu T, Bai L, Yang D, Di D, Sha WEI, Zhu H, Yang YM. ACS Energy Lett, 2019, 4: 1784–1790

    CAS  Google Scholar 

  51. Wang S, Chen H, Zhang J, Xu G, Chen W, Xue R, Zhang M, Li Y, Li Y. Adv Mater, 2019, 31: 1903691

    CAS  Google Scholar 

  52. Zhao X, Tao L, Li H, Huang W, Sun P, Liu J, Liu S, Sun Q, Cui Z, Sun L, Shen Y, Yang Y, Wang M. Nano Lett, 2018, 18: 2442–2449

    CAS  PubMed  Google Scholar 

  53. Park SJ, Jeon S, Lee IK, Zhang J, Jeong H, Park JY, Bang J, Ahn TK, Shin HW, Kim BG, Park HJ. J Mater Chem A, 2017, 5: 13220–13227

    CAS  Google Scholar 

  54. Cui P, Wei D, Ji J, Huang H, Jia E, Dou S, Wang T, Wang W, Li M. Nat Energy, 2019, 4: 150–159

    CAS  Google Scholar 

  55. Xu G, Xue R, Chen W, Zhang J, Zhang M, Chen H, Cui C, Li H, Li Y, Li Y. Adv Energy Mater, 2018, 8: 1703054

    Google Scholar 

  56. Huang P, Liu Y, Zhang K, Yuan L, Li D, Hou G, Dong B, Zhou Y, Song B, Li Y. J Mater Chem A, 2017, 5: 24275–24281

    CAS  Google Scholar 

  57. Li W, Rothmann MU, Liu A, Wang Z, Zhang Y, Pascoe AR, Lu J, Jiang L, Chen Y, Huang F, Peng Y, Bao Q, Etheridge J, Bach U, Cheng YB. Adv Energy Mater, 2017, 7: 1700946

    Google Scholar 

  58. Stolterfoht M, Caprioglio P, Wolff CM, Márquez JA, Nordmann J, Zhang S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D. Energy Environ Sci, 2019, 12: 2778–2788

    CAS  Google Scholar 

  59. Tu YG, Xu GN, Yang XY, Zhang YF, Li ZJ, Su R, Luo DY, Yang WQ, Miao Y, Cai R, Jiang LH, Du XW, Yang YC, Liu QS, Gao Y, Zhao S, Huang W, Gong QH, Zhu R. Sci China-Phys Mech Astron, 2019, 62: 974221

    Google Scholar 

  60. Tu Y, Yang X, Su R, Luo D, Cao Y, Zhao L, Liu T, Yang W, Zhang Y, Xu Z, Liu Q, Wu J, Gong Q, Mo F, Zhu R. Adv Mater, 2018, 30: 1805085

    Google Scholar 

  61. Zhuang R, Wang X, Ma W, Wu Y, Chen X, Tang L, Zhu H, Liu J, Wu L, Zhou W, Liu X, Yang YM. Nat Photonics, 2019, 13: 602–608

    CAS  Google Scholar 

  62. Cha M, Da P, Wang J, Wang W, Chen Z, Xiu F, Zheng G, Wang ZS. J Am Chem Soc, 2016, 138: 8581–8587

    CAS  PubMed  Google Scholar 

  63. Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207

    Google Scholar 

  64. Mandoc MM, Kooistra FB, Hummelen JC, de Boer B, Blom PWM. Appl Phys Lett, 2007, 91: 263505

    Google Scholar 

  65. Zhang T, Guo N, Li G, Qian X, Zhao Y. Nano Energy, 2016, 26: 50–56

    Google Scholar 

  66. Fairfield DJ, Sai H, Narayanan A, Passarelli JV, Chen M, Palasz J, Palmer LC, Wasielewski MR, Stupp SI. J Mater Chem A, 2019, 7: 1687–1699

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51922074, 51673138, 51820105003), the Tang Scholar, the Priority Academic Program Development of Jiangsu Higher Education Institutions, Collaborative Innovation Center of Suzhou Nano Science and Technology, Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, National Key Research and Development Program 376 of China (2017YFA0207700), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18 2496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowen Li.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2020_9741_MOESM1_ESM.pdf

Molecular Engineering for Efficient and Modular p-i-n Perovskite Solar Cells through Supramolecular Interactions and Reverse Diffusion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, R., Zhang, M., Luo, D. et al. Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells. Sci. China Chem. 63, 987–996 (2020). https://doi.org/10.1007/s11426-020-9741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9741-1

Keywords

Navigation