Skip to main content
Log in

CuO/Cu2O nanowire array photoelectrochemical biosensor for ultrasensitive detection of tyrosinase

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) biosensors have shown great promise in bioanalysis and diagnostic applications in recent years. In this work, the CuO/Cu2O nanowire array (CuO/Cu2O Nanowire) supported on copper foam was prepared as a photocathode for detection of tyrosinase though quinone-chitosan conjugation chemistry method. The in-situ generated quinones that were the catalytic product of tyrosinase acted as electron acceptors, which were captured by the chitosan deposited on the surface of the electrode. Direct immobilization of electron acceptor on the electrode surface improved the photocurrent conversion efficiency and thus sensitivity. The as-prepared biosensor can realize a rapid response in a wide linear range of 0.05 U/mL to 10 U/mL with the detection limit as low as 0.016 U/mL of tyrosinase. The current work provides a new perspective to design and develop highly sensitive and selective PEC biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim TI, Park J, Park S, Choi Y, Kim Y. Chem Commun, 2011, 1: 12640–12642

    Article  Google Scholar 

  2. Yan X, Li H, Zheng W, Su X. Anal Chem, 2015, 1: 8904–8909

    Article  Google Scholar 

  3. Corani A, Huijser A, Gustavsson T, Markovitsi D, Malmqvist PÅ, Pezzella A, d’Ischia M, Sundström V. J Am Chem Soc, 2014, 1: 11626–11635

    Article  Google Scholar 

  4. Yu SY, Xue TY, Zhu LB, Fan GC, Han DM, Wang C, Zhao WW. Biosens Bioelectron, 2019, 1: 128–131

    Article  Google Scholar 

  5. Decker H, Dillinger R, Tuczek F. Angew Chem Int Ed, 2000, 1: 1591–1595

    Article  Google Scholar 

  6. Solem E, Tuczek F, Decker H. Angew Chem Int Ed, 2016, 1: 2884–2888

    Article  Google Scholar 

  7. Wu X, Li X, Li H, Shi W, Ma H. Chem Commun, 2017, 1: 2443–2446

    Article  Google Scholar 

  8. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Science, 2013, 1: 957–959

    Article  Google Scholar 

  9. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Nature, 2002, 1: 949–954

    Article  Google Scholar 

  10. Zhan C, Cheng J, Li B, Huang S, Zeng F, Wu S. Anal Chem, 2018, 1: 8807–8815

    Article  Google Scholar 

  11. Teng Y, Jia X, Li J, Wang E. Anal Chem, 2015, 1: 4897–4902

    Article  Google Scholar 

  12. Wei J, Qiu J, Li L, Ren L, Zhang X, Chaudhuri J, Wang S. Nanotechnology, 2012, 23: 23

    CAS  Google Scholar 

  13. Liu JW, Wang YM, Xu L, Duan LY, Tang H, Yu RQ, Jiang JH. Anal Chem, 2016, 1: 8355–8358

    Article  Google Scholar 

  14. Khoobi A, Ghoreishi SM, Behpour M, Masoum S. Anal Chem, 2014, 1: 8967–8973

    Article  Google Scholar 

  15. Salamon J, Sathishkumar Y, Ramachandran K, Lee YS, Yoo DJ, Kim AR, Gnana Kumar G. Biosens Bioelectron, 2015, 1: 269–276

    Article  Google Scholar 

  16. Lei C, Zhao XE, Sun J, Yan X, Gao Y, Gao H, Zhu S, Wang H. Talanta, 2017, 1: 457–462

    Article  Google Scholar 

  17. Lin Y, Yin M, Pu F, Ren J, Qu X. Small, 2011, 1: 1557–1561

    Article  Google Scholar 

  18. Zhao WW, Ma ZY, Yan DY, Xu JJ, Chen HY. Anal Chem, 2012, 1: 10518–10521

    Article  Google Scholar 

  19. Wang GL, Shu JX, Dong YM, Wu XM, Li ZJ. Biosens Bioelectron, 2015, 1: 283–289

    Article  Google Scholar 

  20. Izaki M, Fukazawa K, Sato K, Khoo PL, Kobayashi M, Takeuchi A, Uesugi K. ACS Appl Energy Mater, 2019, 1: 4833–4840

    Article  Google Scholar 

  21. Liu X, Chen J, Liu P, Zhang H, Li G, An T, Zhao H. Appl Catal AGeneral, 2016, 1: 34–41

    Article  Google Scholar 

  22. Baghriche O, Rtimi S, Pulgarin C, Kiwi J. Catal Today, 2017, 1: 77–83

    Article  Google Scholar 

  23. Wu HW, Lee SY, Lu WC, Chang KS. Appl Surf Sci, 2015, 1: 236–241

    Article  Google Scholar 

  24. Li B, Lai C, Zeng G, Qin L, Yi H, Huang D, Zhou C, Liu X, Cheng M, Xu P, Zhang C, Huang F, Liu S. ACS Appl Mater Interfaces, 2018, 1: 18824–18836

    Article  Google Scholar 

  25. Wei Z, Benlin D, Fengxia Z, Xinyue T, Jiming X, Lili Z, Shiyin L, Leung DYC, Sun C. Appl Catal B-Environ, 2018, 1: 171–180

    Article  Google Scholar 

  26. Liu YL, Zhu YC, Qu LB, Yang R, Yu XD, Zhao WW. ACS Appl Bio Mater, 2019, 1: 2703–2707

    Article  Google Scholar 

  27. Guo X, Liu S, Yang M, Du H, Qu F. Biosens Bioelectron, 2019, 1: 111312–111318

    Article  Google Scholar 

  28. Guo X, Kong RM, Zhang X, Du H, Qu F. ACS Catal, 2018, 1: 651–655

    Article  Google Scholar 

  29. Wang GL, Yuan F, Gu T, Dong Y, Wang Q, Zhao WW. Anal Chem, 2018, 1: 1492–1497

    Article  Google Scholar 

  30. Kumar G, Smith PJ, Payne GF. Biotechnol Bioeng, 1999, 1: 154–165

    Article  Google Scholar 

  31. Xie L, Tang C, Wang K, Du G, Asiri AM, Sun X. Small, 2017, 13: 13

    Google Scholar 

  32. Liu J, Wang L, Wang N, Guo F, Hou L, Chen Y, Liu J, Zhao Y, Jiang L. Small, 2016, 13: 13

    Google Scholar 

  33. Jiang D, Xue J, Wu L, Zhou W, Zhang Y, Li X. Appl Catal B-Environ, 2017, 1: 199–204

    Article  Google Scholar 

  34. Yusof NAA, Zain NM, Pauzi N. International Journal of Biological Macromolecules, 2019, 1: 1132–1136

    Article  Google Scholar 

  35. Lin S, Liu L, Yang Y, Lin K. Appl Surf Sci, 2017, 1: 29–35

    Article  Google Scholar 

  36. Dubale AA, Pan CJ, Tamirat AG, Chen HM, Su WN, Chen CH, Rick J, Ayele DW, Aragaw BA, Lee JF, Yang YW, Hwang BJ. J Mater Chem A, 2015, 1: 12482–12499

    Article  Google Scholar 

  37. Li J, Zhang Z, Ji Y, Jin Z, Zou S, Zhong Z, Su F. Nano Res, 2016, 1: 1377–1392

    Article  Google Scholar 

  38. Platzman I, Brener R, Haick H, Tannenbaum R. J Phys Chem C, 2008, 1: 1101–1108

    Article  Google Scholar 

  39. Wang Y, Lü Y, Zhan W, Xie Z, Kuang Q, Zheng L. J Mater Chem A, 2015, 1: 12796–12803

    Article  Google Scholar 

  40. Chen J, Zhao GC. Biosens Bioelectron, 2017, 1: 155–160

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21775089), the Outstanding Youth Foundation of Shandong Province (ZR2017JL010), the Key Research and Development Program of Jining City (2018ZDGH032) and Taishan scholar of Shandong Province (tsqn201909106). Thanks eceshi (http://www.eceshi.cn) for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengli Qu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wu, J., Xia, L. et al. CuO/Cu2O nanowire array photoelectrochemical biosensor for ultrasensitive detection of tyrosinase. Sci. China Chem. 63, 1012–1018 (2020). https://doi.org/10.1007/s11426-020-9717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9717-8

Keywords

Navigation